

Human Biology

A/T/M

Cover Art provided by Canberra College student Aidan Giddings

Table of Contents

The ACT Senior Secondary System	
ACT Senior Secondary Certificate	2
Learning Principles	
General Capabilities	
Cross-Curriculum Priorities	
Rationale	7
Goals	
Unit Titles	9
Organisation of Content	
Assessment	
Achievement Standards	
The Essentials of Human Life	Value 1.0
The Aging Human Body	Value 1.0
Human Health and the Environment	Value 1.0
Treating the Human Body	Value 1.0
Independent Study	Value 1.0
Appendix A – Implementation Guidelines	
Appendix B – Course Developers	
Appendix C – Common Curriculum Element	s
Appendix D – Glossary of Verbs	
Appendix E – Glossary for ACT Senior Secon	dary Curriculum54
Appendix F – Course Adoption	

The ACT Senior Secondary System

The ACT senior secondary system recognises a range of university, vocational or life skills pathways.

The system is based on the premise that teachers are experts in their area: they know their students and community and are thus best placed to develop curriculum and assess students according to their needs and interests. Students have ownership of their learning and are respected as young adults who have a voice.

A defining feature of the system is school-based curriculum and continuous assessment. School-based curriculum provides flexibility for teachers to address students' needs and interests. College teachers have an opportunity to develop courses for implementation across ACT schools. Based on the courses that have been accredited by the BSSS, college teachers are responsible for developing programs of learning. A program of learning is developed by individual colleges to implement the courses and units they are delivering.

Teachers must deliver all content descriptions; however, they do have flexibility to emphasise some content descriptions over others. It is at the discretion of the teacher to select the texts or materials to demonstrate the content descriptions. Teachers can choose to deliver course units in any order and teach additional (not listed) content provided it meets the specific unit goals.

School-based continuous assessment means that students are continually assessed throughout years 11 and 12, with both years contributing equally to senior secondary certification. Teachers and students are positioned to have ownership of senior secondary assessment. The system allows teachers to learn from each other and to refine their judgement and develop expertise.

Senior secondary teachers have the flexibility to assess students in a variety of ways. For example: multimedia presentation, inquiry-based project, test, essay, performance and/or practical demonstration may all have their place. College teachers are responsible for developing assessment instruments with task specific rubrics and providing feedback to students.

The integrity of the ACT Senior Secondary Certificate is upheld by a robust, collaborative and rigorous structured consensus-based peer reviewed moderation process. System moderation involves all Year 11 and 12 teachers from public, non-government and international colleges delivering the ACT Senior Secondary Certificate.

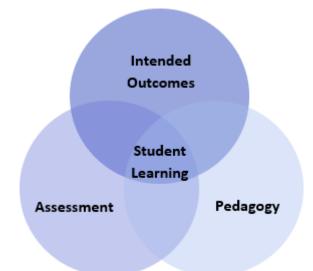
Only students who desire a pathway to university are required to sit a general aptitude test, referred to as the ACT Scaling Test (AST), which moderates student course scores across subjects and colleges. Students are required to use critical and creative thinking skills across a range of disciplines to solve problems. They are also required to interpret a stimulus and write an extended response.

Senior secondary curriculum makes provision for student-centred teaching approaches, integrated and project-based learning inquiry, formative assessment and teacher autonomy. ACT Senior Secondary Curriculum makes provision for diverse learners and students with mild to moderate intellectual disabilities, so that all students can achieve an ACT Senior Secondary Certificate.

The ACT Board of Senior Secondary Studies (BSSS) leads senior secondary education. It is responsible for quality assurance in senior secondary curriculum, assessment and certification. The Board consists of representatives from colleges, universities, industry, parent organisations and unions. The Office of the Board of Senior Secondary Studies (OBSSS) consists of professional and administrative staff who support the Board in achieving its objectives and functions.

ACT Senior Secondary Certificate

Courses of study for the ACT Senior Secondary Certificate:


- provide a variety of pathways, to meet different learning needs and encourage students to complete their secondary education
- enable students to develop the essential capabilities for twenty-first century learners
- empower students as active participants in their own learning
- engage students in contemporary issues relevant to their lives
- foster students' intellectual, social and ethical development
- nurture students' wellbeing, and physical and spiritual development
- enable effective and respectful participation in a diverse society.

Each course of study:

- comprises an integrated and interconnected set of knowledge, skills, behaviours and dispositions that students develop and use in their learning across the curriculum
- is based on a model of learning that integrates intended student outcomes, pedagogy and assessment
- outlines teaching strategies which are grounded in learning principles and encompass quality teaching
- promotes intellectual quality, establish a rich learning environment and generate relevant connections between learning and life experiences
- provides formal assessment and certification of students' achievements.

Underpinning beliefs

- All students are able to learn.
- Learning is a partnership between students and teachers.
- Teachers are responsible for advancing student learning.

Learning Principles

1. Learning builds on existing knowledge, understandings and skills.

(Prior knowledge)

- When learning is organised around major concepts, principles and significant real-world issues, within and across disciplines, it helps students make connections and build knowledge structures. (Deep knowledge and connectedness)
- Learning is facilitated when students actively monitor their own learning and consciously develop ways of organising and applying knowledge within and across contexts. (Metacognition)
- Learners' sense of self and motivation to learn affects learning. (Self-concept)
- 5. Learning needs to take place in a context of high expectations. *(High expectations)*
- 6. Learners learn in different ways and at different rates.
- (Individual differences)
- 7. Different cultural environments, including the use of language, shape learners' understandings and the way they learn.

(Socio-cultural effects)

- 8. Learning is a social and collaborative function as well as an individual one. *(Collaborative learning)*
- Learning is strengthened when learning outcomes and criteria for judging learning are made explicit and when students receive frequent feedback on their progress. (Explicit expectations and feedback)

3

General Capabilities

All courses of study for the ACT Senior Secondary Certificate should enable students to develop essential capabilities for twenty-first century learners. These 'capabilities' comprise an integrated and interconnected set of knowledge, skills, behaviours and dispositions that students develop and use in their learning across the curriculum.

The capabilities include:

- literacy
- numeracy
- information and communication technology (ICT)
- critical and creative thinking
- personal and social
- ethical understanding
- intercultural understanding

Courses of study for the ACT Senior Secondary Certificate should be both relevant to the lives of students and incorporate the contemporary issues they face. Hence, courses address the following three priorities. These priorities are:

- Aboriginal and Torres Strait Islander histories and cultures
- Asia and Australia's engagement with Asia
- Sustainability

Elaboration of these General Capabilities and priorities is available on the ACARA website at <u>www.australiancurriculum.edu.au</u>.

Literacy

Literacy is important in students' development of *Science Inquiry Skills* and their understanding of content presented through the *Science Understanding* and *Science as a Human Endeavour* strands. Students gather, interpret, synthesise and evaluate information presented in a wide range of genres, modes and representations (including text, flow diagrams, symbols, graphs and tables). They evaluate information sources and compare and contrast ideas, information and opinions presented within and between texts. They communicate processes and ideas logically and fluently and structure evidence-based arguments, selecting genres and employing appropriate structures and features to communicate for specific purposes and audiences.

Numeracy

Numeracy is key to students' ability to apply a wide range of *Science Inquiry Skills*, including making and recording observations; ordering, representing and analysing data; and interpreting trends and relationships. They employ numeracy skills to interpret complex spatial and graphic representations, and to appreciate the ways in which human systems are structured, interact and change across spatial and temporal scales. They engage in analysis of data, including issues relating to reliability and probability, and they interpret and manipulate mathematical relationships to calculate and predict values.

Information and Communication Technology (ICT) Capability

ICT capability is a key part of *Science Inquiry Skills*. Students use a range of strategies to locate, access and evaluate information from multiple digital sources; to collect, analyse and represent data; to model and interpret concepts and relationships; and to communicate and share science ideas, processes and information. Through exploration of *Science as a Human Endeavour* concepts, students assess the impact of ICT on the development of science and the application of science in society, particularly with regard to collating, storing, managing and analysing large data sets.

Critical and Creative Thinking

Critical and creative thinking is particularly important in the science inquiry process. Science inquiry requires the ability to construct, review and revise questions and hypotheses about increasingly complex and abstract scenarios and to design related investigation methods. Students interpret and evaluate data; interrogate, select and cross-reference evidence; and analyse processes, interpretations, conclusions and claims for validity and reliability, including reflecting on their own processes and conclusions. Science is a creative endeavour and students devise innovative solutions to problems, predict possibilities, envisage consequences and speculate on possible outcomes as they develop *Science Understanding* and *Science Inquiry Skills.* They also appreciate the role of critical and creative individuals and the central importance of critique and review in the development and innovative application of science.

Personal and Social Capability

Personal and social capability is integral to a wide range of activities in Human Biology, as students develop and practise skills of communication, teamwork, decision-making, initiative-taking and self-discipline with increasing confidence and sophistication. In particular, students develop skills in both independent and collaborative investigation; they employ self-management skills to plan effectively, follow procedures efficiently and work safely; and they use collaboration skills to conduct investigations, share research and discuss ideas. In considering aspects of *Science as a Human Endeavour*, students also recognise the role of their own beliefs and attitudes in their response to science issues and applications, consider the perspectives of others, and gauge how science can affect people's lives.

Ethical Understanding

Ethical understanding is a vital part of science inquiry. Students evaluate the ethics of experimental science, codes of practice, and the use of scientific information and science applications. They explore what integrity means in science, and they understand, evaluate and apply ethical guidelines in their investigations. They consider the implications of their investigations on others, the environment and living organisms. They use scientific information to evaluate the claims and actions of others and to inform ethical decisions about a range of social, environmental and personal issues and applications of science.

Intercultural Understanding

Intercultural understanding is fundamental to understanding aspects of *Science as a Human Endeavour*, as students appreciate the contributions of diverse cultures to developing science understanding and the challenges of working in culturally diverse collaborations. They develop awareness that raising some debates within culturally diverse groups requires cultural sensitivity, and they demonstrate open-mindedness to the positions of others. Students also develop an understanding that cultural factors affect the ways in which science influences and is influenced by society.

Cross-Curriculum Priorities

While the significance of the cross-curriculum priorities for Human Biology varies, there are opportunities for teachers to select contexts that incorporate the key concepts from each priority.

Aboriginal and Torres Strait Islander Histories and Cultures

Through an investigation of contexts that draw on Aboriginal and Torres Strait Islander histories and cultures students could investigate the importance of Aboriginal and Torres Strait Islander Peoples' knowledge in developing a richer understanding of the ancient inhabitants of Australia. Students may develop an appreciation of Aboriginal and Torres Strait Islander Peoples and their impact on the environment. They could examine the ways in which the environment, and cultural practices, such as standards stipulating marriage between people of different skin groups have, in turn influenced the genetic integrity of groups, especially in isolated communities and led to changes in physical, behavioural and physiological features of the Aboriginal and Torres Strait Islander Peoples.

Asia and Australia's Engagement with Asia

Contexts that draw on Asian scientific research and development and collaborative endeavours in the Asia Pacific region provide an opportunity for students to investigate Asia and Australia's engagement with Asia. Students could examine the important role played by people of the Asia region in such areas as medicine, biomechanics and biotechnology. They could consider collaborative projects between Australian and Asian scientists and the contribution these make to scientific knowledge.

Sustainability

The Sustainability cross-curriculum priority is explicitly addressed in the Human Biology curriculum. Human Biology provides authentic contexts for exploring, investigating and understanding the function and interactions of human body tissues across a range of spatial and temporal scales. By investigating the relationships between the tissues and tissue components of the human body, and how tissues respond to change, students develop an appreciation for the interconnectedness of the human body to the biosphere, hydrosphere and atmosphere. Students appreciate that the study of human biology provides the basis for decision-making in many areas of society and that these decisions can impact the Earth system. They understand the importance of using science to predict possible effects of an altered environment on the health of the human body and recognise the development of new technologies that minimise their impacts on human populations.

Human Biology A/T/M

Rationale

Human Biology covers a wide range of ideas relating to the functioning of the human body. Students learn about themselves, relating structure to function. They learn how integrated regulation allows individuals to survive in a changing environment and maintain homeostasis. They research new discoveries that are increasing our understanding of the causes of dysfunction, which can lead to new treatments and preventative measures. Reproduction and the development of the foetus are studied in order to understand the sources of variation that make each of us unique individuals. At a time when Australia is suffering a shortage of doctors (Australian Medical Association 2014; Dingle 2014; Sivey and Scott 2013), and there is an exponential growth in the allied medical field (Australian Health Workforce Advisory Committee 2006; Keast 2015), the study of Human Biology has never been more important.

The Human Biology course uses the human life cycle as a means to create a close link between personal experience and theoretical content for students. Health issues that relate to particular life cycle stages are explored with relation to the structure and function of the human body. This connects theory to practice and provides real world examples. A wide range of factors that affect the homeostatic balance of the human body are explored. These include pathogenic attack, immune responses, hormonal imbalances, environmental factors, mental health issues and chronic disease as a result of life style choices.

As a science, the subject matter of this course is founded on knowledge and understanding that has been gained through systematic inquiry and scientific research. Scientific literacy is treated as a core underlying principle to the development of deep understanding in the subject. The knowledge base of the subject is being added to at an exponential rate and students are introduced to new discoveries and advancements, as well as considering the ethical issues relating to medical treatment and research. As a result, students learn to think critically, to evaluate evidence, to solve problems and to communicate understandings in scientific ways.

As a senior secondary subject, Human Biology provides a valuable foundation for students who wish to follow a variety of career pathways by introducing them to the complex technical language of the discipline and to key concepts around the structure and function of the human body. In addition, students develop their numeracy skills through the analysis of mathematical data and their information and communications technology (ICT) skills by undertaking research, analysis and the interpretation of scientific materials. Students are exposed to the real world of individuals working in this area through talks given by experts in their fields.

These skills enable students to make informed decisions about their pathways into Tertiary studies in the fields of medicine and allied subjects (nursing, nutritional health, occupational therapy, osteopathy, paramedicine and physiotherapy, for example). The course develops students' personal capabilities through practical exercises that apply theoretical knowledge to the student as subject, and social capabilities through the practice of collaborative endeavours. The course therefore develops skills and knowledge that prepare students to be responsible citizens.

Goals

Human Biology aims to develop students':

- interest in, and appreciation of, human biology and its usefulness in helping to explain human health and solve problems encountered in their ever-changing world
- understanding of major human biological concepts, theories and models related to human systems from the level of tissue anatomy and physiology to large-scale human health
- appreciation of knowledge relating to the human body structure and functions, and how integrated regulation allows individuals to survive and thrive in a changing environment
- appreciation of how human biology knowledge has developed over time and continues to develop; how scientists use human biology in a range of applications; and how human biological knowledge influences society in local, regional and global contexts
- ability to plan and carry out laboratory and other research investigations including the collection and analysis of qualitative and quantitative data, macroscopic and microscopic materials, and the interpretation of evidence
- ability to evaluate and debate scientific arguments and claims in order to solve problems and generate informed, responsible and ethical conclusions
- ability to communicate human biology concepts to a range of audiences, by discussing findings, developing arguments and drawing conclusions through the appropriate use of representations, multimodal mechanisms and platforms.

Student Group

The senior secondary Human Biology curriculum continues to develop student understanding and skills from across the three strands of the F-10 Australian Curriculum: Science. In the Science Understanding strand, the Human Biology curriculum draws on knowledge and understanding from across the three sub-strands of Biological, Physical and Chemical sciences.

In particular, the Human Biology curriculum continues to develop the key concepts introduced in the Biological Sciences sub-strand of the F-10 years around such core understandings as that of the human body as a system that responds to its external environment, and the mechanisms by which it maintains homeostasis. For the Chemical Sciences sub-strand it builds upon an understanding of chemical reactions as the basis for energy transfer and the creation of complex molecules that provide the biochemical basis of human life. An understanding of energy transfer also expands the Physical Sciences sub-strand of the F-10 science curriculum.

Mathematical skills expected of students studying Human Biology

The Human Biology curriculum requires students to use the mathematical skills they have developed through the F-10 Australian Curriculum: Mathematics, in addition to the numeracy skills they have developed through the Science Inquiry Skills strand of the Australian Curriculum: Science.

Within the Science Inquiry Skills strand, students are required to gather, represent and analyse numerical data to identify the evidence that forms the basis of scientific arguments, claims or conclusions. In gathering and recording numerical data, students are required to make measurements using appropriate units to an appropriate degree of accuracy.

Students may need to be taught when it is appropriate to join points on a graph and when it is appropriate to use a line of best fit. They may also need to be taught how to construct a straight line that will serve as the line of best fit for a set of data presented graphically.

It is assumed that students will be able to competently:

- perform calculations involving addition, subtraction, multiplication and division of quantities
- perform approximate evaluations of numerical expressions
- express fractions as percentages, and percentages as fractions
- calculate percentages
- recognise and use ratios
- transform decimal notation to power of ten notation
- substitute physical quantities into an equation using consistent units so as to calculate one quantity and check the dimensional consistency of such calculations
- solve simple algebraic equations
- comprehend and use the symbols/notations <,>, Δ , \approx
- translate information between graphical, numerical and algebraic forms
- distinguish between discrete and continuous data then select appropriate forms, variables and scales for constructing graphs
- construct and interpret frequency tables and diagrams, pie charts and histograms
- describe and compare data sets using mean, median and inter-quartile range
- interpret the slope of a linear graph.

Unit Titles

There are seven units:

- The Essentials of Human Life
- The Aging Human Body
- Human Health and the Environment
- Treating the Human Body
- Independent Study
- Growth of Humans
- Modern Medicine

Organisation of Content

In Human Biology, students develop their understanding of the structure (anatomy) and the function (physiology) of human tissue from cellular through to organ level. Students also explore human health as affected by changes in cell structure, pathogens or other environmental factors.

The Essentials of Human Life

In this unit students are introduced to the study of human embryonic tissue and its specialisation and development as well as the health implications and the latest developments in gene therapy and stem cell research. The anatomy and physiology of epithelial, connective, muscular and nervous tissues will provide a strong basis for the study of the human body.

The Aging Human Body

In this unit students study the human body from reproduction, through foetal development and each stage of aging. The diseases and conditions which affect humans at different stages of development provide a wealth of topics to investigate.

Human Health and the Environment

In this unit students examine the relationship between environmental conditions and human health, focussing on physical, biological, chemical and social risks. The issue of mental health is an increasingly important area of study and the variety of conditions are dealt with respectfully.

Treating the Human Body

In this unit the students investigate the traditional methods of diagnosing illnesses and treatment regimes. Students will also examine cutting edge techniques and new developments that will potentially allow for treatment of a larger range of ailments.

Independent Study

An Independent Study unit has an important place in senior secondary courses. It is a valuable pedagogical approach that empowers students to make decisions about their own learning. An Independent Study unit can be proposed by an individual student for their own independent study and negotiated with their teacher. The program of learning for an Independent Study unit must meet the unit goals and content descriptions as they appear in the course.

Independent Study units are only available to individual students in Year 12. A student can only study a maximum of one Independent Study unit in each course. Students must have studied at least three standard 1.0 units from this course. An Independent Study unit requires the principal's written approval. Principal approval can also be sought by a student in Year 12 to enrol concurrently in an Independent Study unit and their third or fourth 1.0 unit in this course of study.

Growth of Humans

Growth of Humans is a combination of two 0.5 value units to give a variation in delivery. It combines *Study of Human Tissue* 0.5 and *Human Reproduction 0.5*.

Modern Medicine

Modern Medicine combines Environmental Health 0.5 and Diagnosis and Treatment 0.5.

Science Strand Descriptions

The Australian Curriculum: Science has three interrelated strands: Science Inquiry Skills, Science as a Human Endeavour and Science Understanding. These strands are used to organise the Science learning area from Foundation to Year 12. In the senior secondary Science subjects, the three strands build on students' learning in the F-10 Australian Curriculum: Science.

In the practice of science, the three strands are closely integrated: the work of scientists reflects the nature and development of science, is built around scientific inquiry, and seeks to respond to and influence society. Students' experiences of school science should mirror this multifaceted view of science. To achieve this, the three strands of the Australian Curriculum: Science should be taught in an integrated way. The content descriptions for Science Inquiry Skills, Science as a Human Endeavour and Science Understanding have been written so that this integration is possible in each unit.

Science Inquiry Skills

- Science inquiry involves identifying and posing questions; planning, conducting and reflecting on investigations; processing, analysing and interpreting data; and communicating findings. This strand is concerned with evaluating claims, investigating ideas, solving problems, reasoning, drawing valid conclusions, and developing evidence-based arguments.
- Science investigations are activities in which ideas, predictions or hypotheses are tested and conclusions are drawn in response to a question or problem. Investigations can involve a range of activities, including experimental testing, field work, locating and using information sources, conducting surveys, and using modelling and simulations. The investigation design will depend on the context and subject of the investigation.
- In science investigations, the collection and analysis of data to provide evidence plays a major role. This can involve collecting or extracting information and reorganising data in the form of tables, graphs, flow charts, diagrams, prose, keys, spreadsheets and databases. The analysis of data to identify and select evidence, and the communication of findings, involve the selection, construction and use of specific representations, including mathematical relationships, symbols and diagrams.
- Through the senior secondary Science subjects, students will continue to develop generic science inquiry skills, building on the skills acquired in the F-10 Australian Curriculum: Science. These generic skills are described below and will be explicitly taught and assessed in each unit. In addition, each unit provides more specific skills to be taught within the generic science inquiry skills; these specific skills align with the Science Understanding and Science as a Human Endeavour content of the unit.

The generic science inquiry skills are:

- Identifying, researching and constructing questions for investigation; proposing hypotheses; and predicting possible outcomes.
- Designing investigations, including the procedure/s to be followed, the materials required and the type and amount of primary and/or secondary data to be collected; conducting risk assessments; and considering ethical research.
- Conducting investigations, including using equipment and techniques safely, competently and methodically for the collection of valid and reliable data.
- Representing data in meaningful and useful ways; organising and analysing data to identify trends, patterns and relationships; recognising error, uncertainty and limitations in data; and selecting, synthesising and using evidence to construct and justify conclusions.
- Interpreting scientific and media texts and evaluating processes, claims and conclusions by considering the quality of available evidence; and using reasoning to construct scientific arguments.

- Selecting, constructing and using appropriate representations to communicate understanding, solve problems and make predictions.
- Communicating to specific audiences and for specific purposes using appropriate language, nomenclature, genres and modes.
- The senior secondary Science subjects have been designed to accommodate, if appropriate, an extended scientific investigation within each pair of units.

Science as a Human Endeavour

- Through science, we seek to improve our understanding and explanations of the natural world. The Science as a Human Endeavour strand highlights the development of science as a unique way of knowing and doing and explores the use and influence of science in society.
- As science involves the construction of explanations based on evidence, the development of science concepts, models and theories is dynamic and involves critique and uncertainty. Science concepts, models and theories are reviewed as their predictions and explanations are continually re-assessed through new evidence, often through the application of new technologies. This review process involves a diverse range of scientists working within an increasingly global community of practice and can involve the use of international conventions and activities such as peer review.
- The use and influence of science are shaped by interactions between science and a wide range of social, economic, ethical and cultural factors. The application of science may provide great benefits to individuals, the community and the environment, but may also pose risks and have unintended consequences. As a result, decision making about socio-scientific issues often involves consideration of multiple lines of evidence and a range of stakeholder needs and values. As an ever-evolving body of knowledge, science frequently informs public debate, but is not always able to provide definitive answers.
- Across the senior secondary Science subjects, the same set of Science as a Human Endeavour content descriptions is used for Units 1 and 2 of the subjects; and another set for Units 3 and 4. This consistent approach enables students to develop a rich appreciation of the complex ways in which science interacts with society, through the exploration of Science as a Human Endeavour concepts across the subjects and in multiple contexts.
- 'Examples in context' will be developed to illustrate possible contexts related to Science Understanding content, in which students could explore Science as a Human Endeavour concepts. Each Example in context will be aligned to the relevant sub-unit in Science Understanding and will include links to the relevant Science as a Human Endeavour content descriptions.

Science Understanding

- Science understanding is evident when a person selects and integrates appropriate science concepts, models and theories to explain and predict phenomena, and applies those concepts, models and theories to new situations. Models in science can include diagrams, physical replicas, mathematical representations, word-based analogies (including laws and principles) and computer simulations. Development of models involves selection of the aspects of the system/s to be included in the model, and thus models have inherent approximations, assumptions and limitations.
- The Science Understanding content in each unit develops students' understanding of the key concepts, models and theories that underpin the subject, and of the strengths and limitations of different models and theories for explaining and predicting phenomena.
- Science understanding can be developed through the selection of contexts that have relevance to and are engaging for students.

Assessment

The identification of criteria within the achievement standards and assessment task types and weightings provides a common and agreed basis for the collection of evidence of student achievement.

Assessment Criteria (the dimensions of quality that teachers look for in evaluating student work) provide a common and agreed basis for judgement of performance against unit and course goals, within and across colleges. Over a course, teachers must use all these criteria to assess students' performance but are not required to use all criteria on each task. Assessment criteria are to be used holistically on a given task and in determining the unit grade.

Assessment Tasks elicit responses that demonstrate the degree to which students have achieved the goals of a unit based on the assessment criteria. The Common Curriculum Elements (CCE) is a guide to developing assessment tasks that promote a range of thinking skills (see Appendix C). It is highly desirable that assessment tasks engage students in demonstrating higher order thinking.

Rubrics are constructed for individual tasks, informing the assessment criteria relevant for a particular task and can be used to assess a continuum that indicates levels of student performance against each criterion.

Assessment Criteria

Students will be assessed on the degree to which they demonstrate:

- concepts, models and application
- contexts
- inquiry skills.

Assessment Task Types

Suggested tasks

Individual tasks may incorporate one or more of the following:

- models
- commentary
- debate
- portfolio/journal
- field work
- investigation
- document/source analysis
- practical report
- role play
- research report

- seminar/workshop/lecture
- poster
- response to stimulus
- essay
- multimedia presentation
- creative response
- interview
- discussion forum
- rationale/validation
- practical skills

• test/quiz

It is recommended that a student conceived investigation be undertaken at least once during a minor and twice during a major. This investigation may either be theoretical or practical, or a combination of both.

Weightings in A/T/M 1.0 and 0.5 Units:

No task to be weighted more than 45% for a standard 1.0 unit.

Additional Assessment Information

Requirements

- For a standard unit (1.0), students must complete a minimum of three assessment tasks and a maximum of five.
- For a half standard unit (0.5), students must complete a minimum of two and a maximum of three assessment tasks.
- Students must experience a variety of task types and different modes of communication to demonstrate the Achievement Standards in both theoretical and practical tasks.
- All Achievement Standards must be demonstrated in standard (1.0) or half-standard (0.5) units.
- Task types need to be selected to address all Achievement Standards within the Concepts, Models and Applications, Contexts and Inquiry Skills strands across a standard (1.0) or half-standard (0.5) unit.
- For tasks completed in unsupervised conditions, schools need to have mechanisms to uphold academic integrity, for example: student declaration, plagiarism software, oral defence, interview, or other validation tasks.

Achievement Standards

Years 11 and 12 achievement standards are written for A/T courses. A single achievement standard is written for M courses.

A Year 12 student in any unit is assessed using the Year 12 achievement standards. A Year 11 student in any unit is assessed using the Year 11 achievement standards. Year 12 achievement standards reflect higher expectations of student achievement compared to the Year 11 achievement standards. Years 11 and 12 achievement standards are differentiated by cognitive demand, the number of dimensions and the depth of inquiry.

An achievement standard cannot be used as a rubric for an individual assessment task. Assessment is the responsibility of the college. Student tasks may be assessed using rubrics or marking schemes devised by the college. A teacher may use the achievement standards to inform development of rubrics. The verbs used in achievement standards may be reflected in the rubric. In the context of combined Years 11 and 12 classes, it is best practice to have a distinct rubric for Years 11 and 12. These rubrics should be available for students prior to completion of an assessment task so that success criteria are clear.

BSSS Achievement Standards for Science A Course – Year 11

	A student who achieves an A grade	A student who achieves a B grade	A student who achieves a C grade	A student who achieves a D grade	A student who achieves an E
	typically	typically	typically	typically	grade typically
d Applications	• analyses the fundamental properties and functions of system components, processes and interactions, and how they are affected by factors across a range of temporal and spatial scales	• explains the fundamental properties and functions of system components, processes and interactions, and how they are affected by factors across a range of temporal and spatial scales	• describes the fundamental properties and functions of system components, processes and interactions, and how they are affected by factors across a range of temporal and spatial scales	• identifies the fundamental properties and functions with some identification of system components and factors that affect processes across a range of temporal and spatial scales	• identifies the fundamental properties and functions with little or no identification of system components, processes, interactions and contextual scales
Models and	• analyses the nature, functions, limitations and applications of theories and models using evidence, in unfamiliar contexts	• explains the nature, functions, limitations and applications of theories and models using evidence, in familiar contexts	 describes the nature, functions, limitations and applications of theories and models with supporting evidence 	 identifies the nature, functions, applications, and some possible limitations of theories and models, with some evidence 	• identifies the nature, function of theories and models, with an assertion of a few possible limitations
Concepts,	 assesses evidence with reference to models and/or theories, and develops evidence-based conclusions and assesses limitations 	• explains evidence with reference to models and/or theories, and develops evidence-based conclusions and explains limitations	 describes evidence with reference to models and/or theories, and develops evidence-based conclusions and describes limitations 	 identifies evidence, and develops conclusions with some reference to models and/or theories 	 identifies evidence, and asserts conclusions with little or no reference to models and/or theories
Contexts	 analyses how the practice and applications of science meet needs, make decisions; and is influenced by social, economic, technological, and ethical factors 	 explains how the practice and applications of science meet needs, make decisions, and is influenced by social, economic, technological, and ethical factors 	 describes how the applications of science meet needs, make decisions, and is influenced by social, economic, technological, and ethical factors 	 identifies ways in the applications of science meet needs, and is influenced by some factors 	 identifies ways in which the application of science has been used in society to meet needs
	• designs, conducts and improves safe, ethical and original inquiries individually and collaboratively, that efficiently collect valid and reliable data in response to a complex question	 designs, conducts and improves safe, ethical inquiries individually and collaboratively, that collect valid data in response to a complex question 	 plans and conducts safe, ethical inquiries individually and collaboratively, that collect valid data in response to a question 	 follows a procedure to conduct safe, ethical inquiries individually and collaboratively, to collect data in response to a question with varying success 	• follows a procedure to conduct safe, ethical inquiries individually and collaboratively, to collect data with little or no connection to a question
	 analyses causal and correlational relationships, anomalies, reliability and validity of data and representations, and analyses errors 	 explains causal and correlational relationships, anomalies, reliability and validity of data and representations, and explains errors 	 describes relationships in data sets, reliability and validity of data and representations, and describes common errors 	 identifies trends and anomalies in data and representations, with general comments about errors 	 identifies trends in data and representations, with little or no reference to anomalies and errors
ry Skills	 assesses processes and claims, provides a critique based on evidence, and discusses alternatives 	 explains processes and claims, provides a critique with reference to evidence, and identifies alternatives 	 describes processes and claims, and identifies alternatives with some reference to evidence 	 identifies processes and claims, and identifies the need for improvements with some reference to evidence 	• identifies processes and the need for some improvements, with little or no reference to evidence
Inquiry	• reflects with insight on their own thinking and learning and evaluates planning, time management and use of appropriate strategies to work independently and collaboratively	• reflects on their own thinking and analyses planning, time management, use of appropriate strategies to work independently and collaboratively	 reflects on their own thinking and explains planning, time management, use of appropriate strategies to work independently and collaboratively 	• reflects on their own thinking with some reference to planning, time management, use of appropriate strategies to work independently and collaboratively	• reflects on their own thinking with little or no reference to planning, time management, use of appropriate strategies to work independently and collaboratively
	• communicates concisely, effectively and accurately, demonstrating scientific literacy in a range of modes, styles, representations, and genres for specific audiences and purposes, with appropriate evidence and accurate referencing	• communicates clearly and accurately, demonstrating scientific literacy in a range of modes, styles, representations and genres for specific audiences and purposes, with appropriate evidence and accurate referencing	• communicates accurately demonstrating scientific literacy, in a range of modes, styles, representations, and genres for specific purposes, with appropriate evidence and mostly consistent referencing	 communicates demonstrating some scientific literacy, in a range of modes, representations, and genres with some evidence and inconsistent referencing 	• communicates demonstrating limited scientific literacy, in a range of modes and representations, with inconsistent and inaccurate referencing

BSSS Achievement Standards for Science T Course – Year 11

	A student who achieves an A grade	A student who achieves a B grade	A student who achieves a C grade	A student who achieves a D grade	A student who achieves an E grade
	5	•	typically	_	typically
s	typically	typically	,,,,,,	typically	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Application	• evaluates the fundamental properties and functions of system components, processes and interactions, and the effects of factors across a range of scales	• analyses the fundamental properties and functions of system components, processes and interactions, and the effects of factors across a range of scales	• explains the fundamental properties and functions of system components, processes and interactions and the effects of factors across a range of scales	• describes the fundamental properties and functions, and with some description of system components, processes and interactions, and the effects of factors across a range of scales	• identifies the fundamental properties and functions of system and identifies components, processes and interactions, and the effects of factors across a range of scales
Concepts, Models and Applications	 evaluates the nature, functions, limitations and applications of theories and models using evidence, in unfamiliar contexts analyses evidence with reference to models and/or theories, and develops 	 analyses the nature, functions, limitations and applications of theories and models using evidence, in familiar contexts assesses evidence with reference to models and/or theories, and develops 	 explains the nature, functions, limitations and applications of theories and models using evidence, in familiar contexts explains evidence with reference to models and/or theories, and develops 	 describes the nature, functions, limitations and applications of theories and models with supporting evidence describes evidence, and develops conclusions with some reference to 	 identifies the nature, functions, applications, and some possible limitations of theories and models, with some evidence identifies evidence, and asserts conclusions with little or no reference
Conc	evidence-based conclusions and evaluates limitations	evidence-based conclusions and discusses limitations	evidence-based conclusions and identifies limitations	models and/or theories	to models and/or theories
Contexts	 evaluates epistemology, role of peer review, collaboration and technology in developing knowledge 	 analyses epistemology, role of peer review and technology in developing knowledge 	 explain epistemology, role of peer review and technology in developing knowledge 	 describes the role of peer review in developing knowledge 	 identifies that scientific knowledge has changed over time
Con	 evaluates the influence of social, economic, ethical and cultural factors on Science 	 analyses the influence of social, economic, ethical and cultural factors on Science 	 explains the influence of social, economic, ethical and cultural factors on Science 	 describes the influence of social, economic, ethical and cultural factors on Science 	 identifies the influence of social, economic, ethical and cultural factors on Science
	• designs, conducts and improves safe, ethical and original inquiries individually and collaboratively, that collect valid, reliable data in response to a complex question	• designs, conducts and improves safe, ethical inquiries individually and collaboratively, that collect valid, reliable data in response to a question	• plans and conducts safe, ethical inquiries individually and collaboratively, that collect valid data in response to a familiar question	• follows a procedure to conduct safe, ethical inquiries individually and collaboratively, to collect data in response to a simple question with varying success	• follows a procedure to conduct safe, ethical inquiries individually and collaboratively, to collect data with little or no connection to a question
	 analyses causal and correlational relationships, anomalies, reliability and validity of data and representations, and analyses errors 	 analyses causal and correlational relationships, anomalies, reliability and validity of data and representations, and discusses errors 	 explains causal and correlational relationships, anomalies, reliability and validity of data and representations, and cites common errors 	 describes trends, relationships and anomalies in data, identifies anomalies, and some possible sources of error 	• identifies trends and relationships in data, with little or no reference to sources of error
Inquiry Skills	 analyses processes and claims, and provides a critique based on evidence, and analyses alternatives 	 assesses processes and claims, and provides a critique with reference to evidence, and analyses alternatives 	 explains processes and claims, and identifies alternatives with reference to reliable evidence 	 describes processes and claims, and identifies the need for improvements with some reference to evidence 	• identifies processes and the need for some improvements, with little or no reference to evidence
Inquir	• reflects with insight on own thinking and that of others, and evaluates planning, time management, and use of appropriate work strategies to work independently and collaboratively	• reflects on their own thinking and analyses planning, time management, use of appropriate work strategies to work independently and collaboratively	• reflects on their own thinking and explains planning, time management, use of appropriate work strategies to work independently and collaboratively	• reflects on their own thinking, with reference to planning and the use of appropriate work strategies to work independently and collaboratively	• reflects on their own thinking with little or no reference to planning, time management, and use of work strategies to work independently and collaboratively
	• communicates concisely, effectively and accurately, demonstrating scientific literacy in a range of modes, styles, representations, and genres for specific audiences and purposes, with appropriate evidence and accurate referencing	• communicates clearly and accurately, demonstrating scientific literacy in a range of modes, styles, representations and genres for specific audiences and purposes, with appropriate evidence and accurate referencing	• communicates accurately demonstrating scientific literacy, in a range of modes, styles, representations, and genres for specific purposes, with appropriate evidence and mostly consistent referencing	• communicates demonstrating some scientific literacy, in a range of modes, representations, and genres with some evidence and inconsistent referencing	• communicates demonstrating limited scientific literacy, in a range of modes and representations, with inconsistent and inaccurate referencing

BSSS Achievement Standards for Science A Course – Year 12

	A student who achieves an A grade	A student who achieves a B	A student who achieves a C grade	A student who achieves a D	A student who achieves an E
	•		_		
	typically	grade typically	typically	grade typically	grade typically
Concepts, Models and Applications	 analyses the fundamental properties and functions of system components, processes and interactions, and the effects of factors across a range of scales analyse the nature, functions, limitations and applications of theories 	 explains the fundamental properties and functions of system components, processes and interactions, and the effects of factors across a range of scales explains the nature, functions, limitations and applications of theories 	 describes the fundamental properties and functions of system components, processes and interactions, and the effects of factors across a range of scales describes the nature, functions, limitations and applications of theories 	 describes the fundamental properties and functions of system components, processes and interactions, and the effects of one or more factors describes the nature, functions, limitations and applications of theories 	 identifies the fundamental properties and functions of system components, processes and interactions, and the effects of factors identifies the nature, functions, applications, and some limitations of theories and models with some
oncept Api	 and models using evidence, in unfamiliar contexts assesses evidence with reference to 	and models using evidence, in familiar contextsexplains evidence with reference to	and models using evidence, in familiar contextsdescribes evidence with reference	and models with supporting evidencedescribes evidence, and develops	 evidence identifies evidence, and asserts
ŭ	evidence-based conclusions and evaluates limitations	models and/or theories, and develops evidence-based conclusions and discusses limitations	to models and/or theories, and develops evidence-based conclusions and identifies limitations	conclusions with some reference to models and/or theories	conclusions with little or no reference to models and/or theories
Contexts	 analyses epistemology, role of peer review, collaboration and technology in developing knowledge 	 explains epistemology, role of peer review and technology in developing knowledge 	 describes epistemology, role of peer review and technology in developing knowledge 	 describes role of peer review and technology in developing knowledge 	 identifies that scientific knowledge has changed over time
Cont	 analyses the influence of social, economic, ethical and cultural factors on Science 	 explains the influence of social, economic, ethical and cultural factors on Science 	 describes the influence of social, economic, ethical and cultural factors on Science 	• describes the influence of social, economic, ethical and cultural factors on Science	 identifies the influence of social, economic, ethical and cultural factors on Science
	• designs, conducts and improves safe, ethical and original inquiries individually and collaboratively, that collect valid, reliable data in response to a complex question	• designs, conducts and improves safe, ethical inquiries individually and collaboratively, that collect valid, reliable data in response to a question	 plans and conducts safe, ethical inquiries individually and collaboratively, that collect valid data in response to a familiar question 	• follows a procedure to conduct safe, ethical inquiries individually and collaboratively, to collect data in response to a simple question with varying success	• follows a procedure to conduct safe, ethical inquiries individually and collaboratively, to collect data with little or no connection to a question
	 analyses causal and correlational relationships, anomalies, reliability and validity of data and representations, and analyses errors 	 analyses causal and correlational relationships, anomalies, reliability and validity of data and representations, and discusses errors 	• describes causal and correlational relationships, anomalies, reliability and validity of data and representations, and cites common errors	 describes trends, relationships and anomalies in data, identifies anomalies, and some possible sources of error 	 identifies trends and relationships in data, with little or no reference to sources of error
Inquiry Skills	 analyses processes and claims, and provides a critique based on evidence, and analyses alternatives 	 explains processes and claims, and provides a critique with reference to evidence, and proposes alternatives 	 describes processes and claims, and identifies alternatives with reference to reliable evidence 	• describes processes and claims, and identifies the need for improvements with some reference to evidence	• identifies processes and the need for some improvements, with little or no reference to evidence
Inquiry	• reflects with insight on own thinking and that of others and, evaluates planning, time management and use of appropriate independent and collaborative work strategies	 reflects on their own thinking and analyses planning, time management, and use of appropriate independent and collaborative work strategies 	 reflects on their own thinking and explains planning, time management, and use of appropriate independent and collaborative work strategies 	• reflects on their own thinking, with reference to planning and the use of appropriate independent and collaborative work strategies	• reflects on their own thinking with little or no reference to planning, time management, and use of appropriate independent and collaborative work strategies
	• communicates concisely, effectively and accurately, demonstrating scientific literacy in a range of modes, styles, representations, and genres for specific audiences and purposes, with	• communicates clearly and accurately, demonstrating scientific literacy in a range of modes, styles, representations and genres for specific audiences and purposes, with	• communicates accurately demonstrating scientific literacy, in a range of modes, styles, representations, and genres for specific purposes, with appropriate	• communicates demonstrating some scientific literacy, in a range of modes, representations, and genres with some evidence and inconsistent referencing	• communicates demonstrating limited scientific literacy, in a range of modes and representations, with inconsistent and inaccurate referencing
	appropriate evidence and accurate referencing	appropriate evidence and accurate referencing	evidence and mostly consistent referencing		

BSSS Achievement Standards for Science T Course – Year 12

	A student who achieves an A grade	A student who achieves a B grade	A student who achieves a C grade	A student who achieves a D grade	A student who achieves an E grade
	typically	typically	typically	typically	typically
Applications	• evaluates the properties and functions of system components, processes and interactions, and the interplay and effects of factors across a range of scales	analyses the properties and functions of system components, processes and interactions, and the interplay and effects of factors across a range of scales	 explains the fundamental properties and functions of system components, processes and interactions, and the effects of factors across a range of scales 	• describes the fundamental properties and functions of system components, processes and interactions, and the effects of one or more factors	 identifies the fundamental properties and functions of system components, processes and interactions, and some affective factors
, Models and Applications	• evaluates applications, limitations, and predictions of theories and models to explain systems and create solutions, with evidence, in unfamiliar contexts	• analyses applications, limitations, and predictions of theories and models to explain systems and create plausible solutions, with evidence in familiar contexts	• explains applications, limitations, and predictions of theories and models to explain systems and create plausible solutions in familiar contexts	 describes the nature, functions, limitations and applications of theories and models to create solutions to problems with supporting evidence 	• identifies the nature, functions, limitations and applications of theories and models, and suggest solutions to problems with supporting evidence
Concepts,	 evaluates evidence with reference to analysis of models and/or theories, and develops evidence-based conclusions and evaluates limitations 	 analyses evidence with reference to models and/or theories, and develops evidence-based conclusions and discusses limitations 	 explains evidence with reference to models and/or theories, and develops evidence-based conclusions and identifies limitations 	 describes evidence, and develops conclusions with some reference to models and/or theories 	 identifies evidence, and asserts conclusions with little or no reference to models and/or theories
exts	 evaluates epistemology, role of peer review, collaboration, and technology in developing knowledge 	 analyses epistemology, role of peer review and technology in developing knowledge 	 explains epistemology, role of peer review and technology in developing knowledge 	 describes role of peer review and technology in developing knowledge 	 identifies that scientific knowledge has changed over time
Contexts	 evaluates the influence of social, economic, ethical and cultural factors on Science 	• analyses the influence of social, economic, ethical and cultural factors on Science	 explains the influence of social, economic, ethical and cultural factors on Science 	 describes the influence of social, economic, ethical and cultural factors on Science 	 identifies the influence of social, economic, ethical and cultural factors on Science
	 designs, conducts and improves safe, ethical and original inquiries individually and collaboratively, that collect valid, reliable data in response to a complex question 	• designs, conducts and improves safe, ethical inquiries individually and collaboratively, that collect valid, reliable data in response to a question	 plans and conducts safe, ethical inquiries individually and collaboratively, that collect valid data in response to a familiar question 	 follows a procedure to conduct safe, ethical inquiries individually and collaboratively, to collect data in response to a simple question with varying success 	• follows a procedure to conduct safe, ethical inquiries individually and collaboratively, to collect data with little or no connection to a question
s	 evaluates cause and correlation, anomalies, reliability and validity of data and representations, and evaluates errors 	• analyses cause and correlation, anomalies, reliability and validity of data and representations, and analyses errors	 explains causal and correlational relationships, anomalies, reliability and validity of data and representations, and discusses common errors 	 describes trends, relationships and anomalies in data, identifies anomalies, and cites sources of error 	 identifies trends and relationships in data with reference to sources of error
Inquiry Skills	 evaluates processes and claims, and provides a critique based on evidence, and evaluates alternatives 	 analyses processes and claims, and provides a critique with reference to evidence, and analyses alternatives 	 explains processes and claims, and identifies alternatives with reference to reliable evidence 	 describes processes and claims, and identifies the need for improvements with some reference to evidence 	 identifies processes and the need for some improvements, with little or no reference to evidence
bul	 reflects with insight on own thinking and that of others, evaluates planning, time management, and use of appropriate independent and collaborative work strategies 	• reflects on their own thinking and analyses planning, time management, and use of appropriate independent and collaborative work strategies	 reflects on their own thinking and explains planning, time management, and use of appropriate independent and collaborative work strategies 	 reflects on their own thinking, with reference to planning and the use of appropriate independent and collaborative work strategies 	 reflects on their own thinking with little or no reference to planning, time management, and use of appropriate independent and collaborative work strategies
	• communicates concisely, effectively and accurately, with scientific literacy in a range of modes, representations, and genres for specific audiences and purposes, and accurate referencing	• communicates clearly and accurately, with scientific literacy in a range of modes, representations and genres for specific audiences and purposes, and accurate referencing	• communicates accurately demonstrating scientific literacy, in a range of modes, representations, and genres for specific purposes, and mostly consistent referencing	• communicates demonstrating some scientific literacy, in a range of modes, representations, and genres with some evidence and inconsistent referencing	• communicates demonstrating limited scientific literacy, in a range of modes and representations, with inconsistent and inaccurate referencing

Achievement Standards for Science M Course – Years 11 and 12

	A student who achieves an A	A student who achieves a B	A student who achieves a C	A student who achieves a D	A student who achieves an E
	grade typically	grade typically	grade typically	grade typically	grade typically
nd Applications	 describes the properties and functions of system components and processes with independence 	 describes the properties and functions of system components, processes and interactions with assistance 	 identifies the properties and functions of system components, processes and interactions with independence 	 identifies the properties and functions of system components, processes and interactions with assistance 	 identifies the properties and functions of system components, processes and interactions with direct instruction
Concepts, Models and Applications	 describes system components and processes with some reference to how they are affected by factors with independence 	 describes system components, processes and interactions with some reference to how they are affected by factors with assistance 	 identifies system components, processes and interactions with independence 	 identifies system components, processes and interactions with assistance 	 identifies system components, processes and interactions with direct instruction
Contexts	 describes the impact of science on an aspect of society with independence 	 describes the impact of science on an aspect of society with some independence 	 identifies the impact of science on an aspect of society with independence 	 identifies the impact of science on an aspect of society with assistance 	 identifies the impact of science on an aspect of society with direct instruction
	 plans and conducts	 plans and conducts	 plans and conducts	 plans and conducts	 follows a procedure to
	investigations in response	investigations in response	investigations in response	investigations in response	conduct investigations to
	to a question or problem	to a question or problem	to a question or problem	to a question or problem	collect data with direct
	with independence draws evidence-based	with some independence	with assistance	with repeated cueing	instruction
Inquiry Skills	 draws evidence-based	 draws evidence-based	 draws evidence-based	 draws evidence-based	 draws evidence-based
	conclusions from	conclusions from	conclusions from	conclusions from	conclusions from
	investigations with	investigations with some	investigations with	investigations with	investigations with direct
	independence	independence	assistance	repeated cueing	instruction
bul	 reflects on own thinking	 reflects on own thinking	 reflects on own thinking	 reflects on own thinking	 reflects on own thinking
	and learning in science with	and learning in science with	and learning in science with	and learning in science with	and learning in science with
	independence	some independence	assistance	repeated cueing	direct instruction
	 communicates findings effectively with independence 	 communicates findings effectively with some independence 	 communicates findings with assistance 	 communicates findings with repeated cueing 	 communicates findings with direct instruction

The Essentials of Human Life

The Essentials of Human Life a

The Essentials of Human Life b

Unit Description

Human embryos undergo cell replication and specialisation to initially form different germ layers and later develop into specialised tissue types (connective, epithelial, muscular and nervous). Students learn about the stem cells from which tissue form in the embryo and which are the foundation for the growing therapeutic treatment of a number of degenerative diseases. In doing so students discover that different sorts of stem cells have different efficacies for treatment of disease.

They also focus on the anatomy and physiology of different tissue types and their purposes in the mature human body. The nature of the different types of tissue is investigated and the roles they play in the human body are explored (for example, the different types of squamous tissue and the impact of different structural forms on different roles in the body). Relationships between the tissue types are explored in order to develop an understanding of the intricate interconnectivity that produces the specialised organs of the human body such as the heart and the liver, with a specialised function.

Through the investigation of appropriate contexts, students explore how evidence from multiple disciplines and the use of ICT and other technologies have contributed to developing understanding of the development of the human embryo and the structure and function of tissue types. They investigate how scientific knowledge is used to offer valid explanations and reliable predictions, and the ways in which scientific knowledge interacts with social, economic, cultural and ethical considerations.

Students use science inquiry skills to explore the relationship between development structure and function, by conducting real or virtual dissections and carrying out microscopic examination of cells and tissues. Students consider the ethical considerations that apply to the use of living organisms in research. They develop skills in constructing and using models to describe and interpret data about the functions of cells and organisms.

Specific Unit Goals

• understand how important	
stem cells are in the human body and the role their differentiation plays in the developments of the human body	 understand that stem cells are in the human body
 understand how the classification of tissue types can enhance the study of their function in the human body understand how the different tissue types present in the human body maintain and control the flow of fluids 	• understand that different types of tissues have functions in the human body
	 body and the role their differentiation plays in the developments of the human body understand how the classification of tissue types can enhance the study of their function in the human body understand how the different tissue types present n the human body maintain

This unit should enable students to:

Value 1.0 Value 0.5 Value 0.5

A Course	T Course	M Course
• use science inquiry skills to design, conduct and communicate investigations into the function and nature of tissue at macroscopic and microscopic level	• use science inquiry skills to design, conduct, evaluate and communicate investigations into the function and nature of tissue at macroscopic and microscopic level	 use some science inquiry skills to conduct and communicate investigations
 review, with reference to empirical evidence, investigations into tissue structure and the function of cell differentiation 	 evaluate, with reference to empirical evidence, investigations into tissue structure and the function of cell differentiation 	
 communicate human biological understanding using qualitative and quantitative representations 	 communicate human biological understanding using qualitative and quantitative representations in appropriate modes and genres 	 communicate human biological understanding using qualitative representations

Content Descriptions

All knowledge, understanding and skills below must be delivered:

A Course	T Course	M Course			
Science Inquiry Skills					
 identify and research questions for investigation; propose hypotheses; and predict possible outcomes 	 identify, research and refine questions for investigation; propose hypotheses; and predict possible outcomes 	 use data to respond to questions 			
• design investigations, including the procedure/s to be followed, the materials required, conduct risk assessments; and consider research ethics	• design investigations, including the procedure/s to be followed, the materials required, and the type and amount of primary and/or secondary data to be collected; conduct risk assessments; and consider research ethics	follow instructions to conduct practicals			
• conduct investigations, including monitoring body functions; using microscopy techniques; and performing dissections safely, competently and methodically for the collection of valid and reliable data	 conduct investigations, including monitoring body functions; using microscopy techniques; and performing dissections safely, competently and methodically for the collection of valid and reliable data 	• conduct investigations safely, competently and methodically			

A Course	T Course	M Course
 represent data in meaningful and useful ways; organise and process data to identify trends, patterns and relationships to make conclusions 	• represent data in meaningful and useful ways; organise and process data to identify trends, patterns and relationships; qualitatively describe sources of measurement error, and uncertainty and limitations in data; and select, synthesise and use evidence to make and justify conclusions	represent data
• interpret selected scientific and media texts, and evaluate claims and conclusions by considering the quality of available evidence; and use reasoning to construct scientific arguments	• interpret a range of scientific and media texts, and evaluate processes, claims and conclusions by considering the quality of available evidence; and use reasoning to construct scientific arguments	 view selected scientific and media texts
• select and use appropriate representations including labelled diagrams and images of various cells, tissues, to communicate understanding, solve problems and make predictions	 select, construct and use appropriate representations including labelled diagrams and images of various cells, tissues, to communicate conceptual understanding, solve problems and make predictions 	• use appropriate representations including labelled diagrams and images of various cells, tissues, to aid understanding
• communicate to a general audience using appropriate language, nomenclature, genres and modes, including scientific reports	 communicate to specific audiences and for specific purposes using appropriate language, nomenclature, genres and modes, including scientific reports 	 communicate to a general audience using appropriate language, about the topic
Science as a Human Endeavour		
 science is a global enterprise that relies on clear communication, international conventions, peer review and reproducibility 	 science is a global enterprise that relies on clear communication, international conventions, peer review and reproducibility 	science is a global enterprise
 development of complex models and/or theories often requires a wide range of evidence from multiple individuals and across disciplines 	 development of complex models and/or theories often requires a wide range of evidence from multiple individuals and across disciplines 	 development of models requires a range of evidence
 advances in science understanding in one field can influence other areas of science, technology and engineering 	 advances in science understanding in one field can influence other areas of science, technology and engineering 	 advances in science understanding in one field can influence other areas

A Course	T Course	M Course
 the use of scientific knowledge is influenced by social, economic, cultural and ethical considerations the use of scientific 	 the use of scientific knowledge is influenced by social, economic, cultural and ethical considerations the use of scientific 	the use of scientific
knowledge may have beneficial and/or unintended consequences	knowledge may have beneficial and/or harmful and/or unintended consequences	knowledge may have beneficial or unintended consequences
 scientific knowledge can enable scientists to offer valid explanations and make reliable predictions 	 scientific knowledge can enable scientists to offer valid explanations and make reliable predictions 	 scientific knowledge can enable scientists to offer valid explanations and make reliable predictions
• scientific knowledge can be used to develop and evaluate projected economic, social and environmental impacts and to design action for sustainability	 scientific knowledge can be used to develop and evaluate projected economic, social and environmental impacts and to design action for sustainability 	
Science Understanding		
• the human body has more than two hundred different types of cells of varying shape, size and function	• the human body has more than two hundred different types of cells of varying shape, size and function	• the human body has more than many different types of cells
 cell specialisation in humans occurs during embryonic development 	 cell specialisation in humans occurs during embryonic development 	 cell specialisation in humans occurs with embryonic development
 stem cells have the ability to divide by mitosis and differentiate into many different tissues, depending on the level of cell potency 	 stem cells have the ability to divide by mitosis and differentiate into many different tissues, depending on the level of cell potency 	
• a germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues	• a germ layer is a group of cells in an embryo that interact with each other as the embryo develops and contribute to the formation of all organs and tissues	
• three germ layers in a human embryo are the endoderm, mesoderm and ectoderm	 three germ layers in a human embryo are the endoderm, mesoderm and ectoderm 	
• most human organs contain representatives of all four primary tissue types: epithelial, connective, muscular and nervous tissue	 most human organs contain representatives of all four primary tissue types: epithelial, connective, muscular and nervous tissue 	 most human organs consist of different tissue types
 some forms of epithelium give rise to the glands of the body during embryonic development 	 some forms of epithelium give rise to the glands of the body during embryonic development 	

A Course	T Course	M Course
 epithelial tissue forms the barrier between different environments (for example the skin lies between the internal and external environments of the human body which acts to protect, absorb, excrete and act as a sensory receptor) different sorts of epithelial tissue serve different functions 	 epithelial tissue forms the barrier between different environments (for example the skin lies between the internal and external environments of the human body which acts to protect, absorb, excrete and act as a sensory receptor) different sorts of epithelial tissue serve different functions (for example, simple squamous epithelium allows the rapid and efficient passage of materials by diffusion) 	epithelial tissue forms the barrier between different environments
 connective tissue not only functions to bind and support other tissues but also to protect, insulate and transport (blood) muscle tissue exerts force through the conversion of chemical energy to mechanical energy to either enable the mobility of the body, or force fluid through the body (for example, cardiac muscle) 	 connective tissue not only functions to bind and support other tissues but also to protect, insulate and transport (blood) muscle tissue exerts force through the conversion of chemical energy to mechanical energy to either enable the mobility of the body, or force fluid through the body (for example, cardiac muscle) 	 connective tissue binds and supports other tissues muscle tissue enables mobility of the body or forces fluid through the body
 nervous tissue of the human body is the master receiver of sensory input, processor of information and communicator through a combination of chemical and electrical signals field of tissue engineering, which aims to repair, regenerate and/or improve scarred tissue, holds great potential for extending tissue therapy (for example, synthetic epidermal layer can be used as artificial human skin to treat burn victims) 	 nervous tissue of the human body is the master receiver of sensory input, processor of information and communicator through a combination of chemical and electrical signals field of tissue engineering, which aims to repair, regenerate and/or improve scarred tissue, holds great potential for extending tissue therapy (for example, synthetic epidermal layer can be used as artificial human skin to treat burn victims) 	 nervous tissue is the processor and communicator of information

A guide to reading and implementing content descriptions

Content descriptions specify the knowledge, understanding and skills that students are expected to learn and that teachers are expected to teach. Teachers are required to develop a program of learning that allows students to demonstrate all the content descriptions. The lens which the teacher uses to demonstrate the content descriptions may be either guided through provision of electives within each unit or determined by the teacher when developing their program of learning.

A program of learning is what a college provides to implement the course for a subject. It is at the discretion of the teacher to emphasis some content descriptions over others. The teacher may teach additional (not listed) content provided it meets the specific unit goals. This will be informed by the student needs and interests.

Assessment

Refer to pages 13-15.

The Aging Human Body The Aging Human Body a The Aging Human Body b

Unit Description

This unit investigates human reproduction and the development of the foetus in order to understand the sources of variation that make each of us unique individuals. Students learn about the mechanisms of transmission of genetic materials to the next generation, the role of gametes in reproduction, the development of the embryo and tests for screening both the embryo and the newly born child for abnormalities. The emphasis is on developing an understanding of the remarkable development and growth rate of the foetus. Advances in technology, such as modern imaging technology, mean that we can trace this development in great detail and precisely mark developmental changes. Students will also study in vitro fertilisation (IVF), sexually transmitted diseases and contraception.

From birth to adulthood, the human body grows at different rates and changes in form. Students focus on a range of illnesses that relate to age and tissue types so that they gain a deep understanding of how disease relates to tissue function in the body. The phenomenon of autophagy is investigated in order to understand the underlying processes of materials from cell destruction being recycled in order to form new tissue. Uncontrolled growth of tissue that leads to cancer is also studied. Students will learn about a range of pathologies that may be age-related and that affect particular tissue types (for example, cystic fibrosis in the young affecting the epithelial tissue of the lungs and digestive systems). Specific instances are chosen in order to provide a wide variety of cases to study such as sensory deprivation in the newly born child through to such pathologies that are age-related such as Alzheimer's and Parkinson's diseases. Medical advances are continually improving the diagnosis of chronic illness and thereby increasing the chances of early intervention. Therapies are considered that may slow the advance of degenerative diseases, such as gene and stem cell therapies.

The unit provides opportunities to explore stem cell research which is an important area that providing opportunities for the development of therapies to treat degenerative diseases. This presents major ethical, social and legal issues. Students investigate how scientific knowledge is used to offer valid explanations and reliable predictions, and the ways in which scientific knowledge interacts with social, economic, cultural and ethical factors.

Students will use ICT to research the population dynamics of these conditions and develop skills in using models to describe and interpret data at the population level. They will also gain an insight into the emotional and mental costs of such diseases as dementia through interaction with practitioners in the field.

Specific Unit Goals

A Course	T Course	M Course
• understand reproduction in the human body and the development of the foetus through the stages in pregnancy	• understand reproduction in the human body and the development of the foetus through the stages in pregnancy	• describe aspects of human reproduction
• understand the different stages of growth and how aging changes the human body	 understand the different stages of growth and how aging changes the human body 	 understand the different stages of growth
• understand how different stages of human development are susceptible to particular conditions and illnesses	 understand how different stages of human development are susceptible to particular conditions and illnesses 	 recognise that certain conditions occur at particular stages of development

Value 1.0 Value 0.5 Value 0.5

• use science inquiry skills to conduct and communicate investigations into the review of medical imaging, such as MRI and PET scan films	• use science inquiry skills to design, conduct, evaluate and communicate investigations into reproduction and growth	use science inquiry skills to conduct investigations
 compare the variety of medical isotopes and their use in the diagnosis and treatment of diseases 	• evaluate, with reference to empirical evidence, claims about the relationship between stage of human development and illness, disease or conditions that can develop	
 communicate human biological understanding using qualitative representations in appropriate modes and genres 	 communicate human biological understanding using qualitative and quantitative representations in appropriate modes and genres 	 communicate some understanding of human biology

Content Descriptions

All knowledge, understanding and skills below must be delivered:

A Course	T Course	M Course
Science Inquiry Skills		
 identify and research questions for investigation; propose hypotheses; and predict possible outcomes 	 identify, research and refine questions for investigation; propose hypotheses; and predict possible outcomes 	 use data to respond to questions
• design investigations, including the procedure/s to be followed, the materials required, conduct risk assessments; and consider research ethics	• design investigations, including the procedure/s to be followed, the materials required, and the type and amount of primary and/or secondary data to be collected; conduct risk assessments; and consider research ethics	• follow instructions to conduct practicals
• conduct investigations, including monitoring body functions; using microscopy techniques; and performing dissections safely, competently and methodically for the collection of valid and reliable data	 conduct investigations, including monitoring body functions; using microscopy techniques; and performing dissections safely, competently and methodically for the collection of valid and reliable data 	• conduct investigations safely, competently and methodically

A Course	T Course	M Course
 represent data in meaningful and useful ways; organise and process data to identify trends, patterns and relationships to make conclusions 	 represent data in meaningful and useful ways; organise and process data to identify trends, patterns and relationships; qualitatively describe sources of measurement error, and uncertainty and limitations in data; and select, synthesise and use evidence to make and justify conclusions 	represent data
• interpret selected scientific and media texts, and evaluate claims and conclusions by considering the quality of available evidence; and use reasoning to construct scientific arguments	• interpret a range of scientific and media texts, and evaluate processes, claims and conclusions by considering the quality of available evidence; and use reasoning to construct scientific arguments	 view selected scientific and media texts
 select and use appropriate representations including labelled diagrams and images of various cells, tissues, to communicate understanding, solve problems and make predictions 	 select, construct and use appropriate representations including labelled diagrams and images of various cells, tissues, to communicate conceptual understanding, solve problems and make predictions 	 use appropriate representations including labelled diagrams and images of various cells, tissues, to aid understanding
 communicate to a general audience using appropriate language, nomenclature, genres and modes, including scientific reports 	 communicate to specific audiences and for specific purposes using appropriate language, nomenclature, genres and modes, including scientific reports 	 communicate to a general audience using appropriate language, about the topic
Science as a Human Endeavour		
• science is a global enterprise that relies on clear communication, international conventions, peer review and reproducibility	 science is a global enterprise that relies on clear communication, international conventions, peer review and reproducibility 	 science is a global enterprise
• development of complex models and/or theories often requires a wide range of evidence from multiple individuals and across disciplines	 development of complex models and/or theories often requires a wide range of evidence from multiple individuals and across disciplines 	 development of models requires a range of evidence
 advances in science understanding in one field can influence other areas of science, technology and engineering 	 advances in science understanding in one field can influence other areas of science, technology and engineering 	 advances in science understanding in one field can influence other areas

A Course	T Course	M Course
 the use of scientific knowledge is influenced by social, economic, cultural and ethical considerations 	• the use of scientific knowledge is influenced by social, economic, cultural and ethical considerations	
• the use of scientific knowledge may have beneficial and/or unintended consequences	 the use of scientific knowledge may have beneficial and/or harmful and/or unintended consequences 	 the use of scientific knowledge may have beneficial or unintended consequences
 scientific knowledge can enable scientists to offer valid explanations and make reliable predictions scientific knowledge can be used to develop and evaluate projected economic, social and environmental impacts and to design action for sustainability 	 scientific knowledge can enable scientists to offer valid explanations and make reliable predictions scientific knowledge can be used to develop and evaluate projected economic, social and environmental impacts and to design action for sustainability 	• scientific knowledge can enable scientists to offer valid explanations and make reliable predictions
Science Understanding		
• differences between the structure and function of the male and female reproductive systems facilitate the production of offspring by producing and delivering gametes for fertilisation and providing resources for the developing embryo and foetus	• differences between the structure and function of the male and female reproductive systems facilitate the production of offspring by producing and delivering gametes for fertilisation and providing resources for the developing embryo and foetus	 identify structures of the male and female reproductive systems
 reproductive systems are regulated by hormones, including the regulation of the menstrual and ovarian cycles 	 reproductive systems are regulated by hormones, including the regulation of the menstrual and ovarian cycles 	 reproductive systems are regulated by hormones
• for pregnancy to occur, conception requires the fusion of viable sperm and ovum, either within the body or through in vitro fertilisation	• for pregnancy to occur, conception requires the fusion of viable sperm and ovum at the optimal time in the ovarian cycle, either within the body or through in vitro fertilisation	 pregnancy to occur, conception requires the sperm and ovum to fuse
• techniques available to genetically screen embryos before implantation or during early development, including blood tests, amniocentesis and chorionic villi sampling	• techniques available to genetically screen embryos (for example to detect brca1 and brca2 genes for breast cancer) before implantation or during early development, including blood tests, amniocentesis and chorionic villi sampling	 techniques available to genetically screen embryos
• contraception methods that reduce the probability of pregnancy all have limitations, risks and benefits	• contraception methods that reduce the probability of the union of gametes or implantation all have limitations, risks and benefits	 contraception methods reduce the probability of pregnancy

A Course	T Course	M Course
 sexually transmitted infections (STIs), diseases transmitted through unprotected sex or genital contact, can be prevented through safe sex methods; early detection and treatment of infection are important and, if left untreated, STIs can lead to serious health consequences the process where a baby goes from in utero to an external environment can be explained by looking at the changes in the circulatory system, moving from dependence on the mother's placenta to the baby relying on its own respiratory and cardiovascular systems the Apgar score, the very first test given to a newhorn is 	 sexually transmitted infections (STIs), diseases transmitted through unprotected sex or genital contact, can be prevented through safe sex methods; early detection and treatment of infection are important and, if left untreated, STIs can lead to serious health consequences the process where a baby goes from in utero to an external environment can be explained by looking at the changes in the circulatory system, moving from dependence on the mother's placenta to the baby relying on its own respiratory and cardiovascular systems the Apgar score, the very first test given to a newborn is 	 sexually transmitted infections (STIs) can lead to serious health consequences the Apgar score, the very first test given to a newborn is
 first test given to a newborn, is designed to detect abnormalities in the baby autophagy describes the normal physiological process in the human body that deals with the destruction of cells and the turnover of building materials for new cells 	first test given to a newborn, is designed to detect abnormalities in the baby • autophagy describes the normal physiological process in the human body that deals with the destruction of cells and the turnover of building materials for new cells	first test given to a newborn, is designed to detect abnormalities in the baby
• sensory deprivation affects childhood development especially in terms of physiological, emotional and intellectual development and shows the link between the social, psychological and physical environment in health	• sensory deprivation affects childhood development especially in terms of physiological, emotional and intellectual development and shows the link between the social, psychological and physical environment in health	• sensory deprivation affects childhood development
 some diseases (both genetic and non-genetic) are currently incurable (cystic fibrosis, Coeliac disease and Huntington's disease, amyotrophic lateral sclerosis and childhood leukaemia) because of the degeneration of specific tissue types and/or current limits to scientific understanding of the disease 	 some diseases (both genetic and non-genetic) are currently incurable (cystic fibrosis, Coeliac disease and Huntington's disease, amyotrophic lateral sclerosis and childhood leukaemia) because of the degeneration of specific tissue types and/or current limits to scientific understanding of the disease 	some diseases are currently incurable

A Course	T Course	M Course
• cystic fibrosis is a disease of	• cystic fibrosis is a disease of	• cystic fibrosis is a disease of
the young which affects the	the young which affects the	the young which affects the
epithelial tissue of the lungs	epithelial tissue of the lungs	tissue of the lungs and
and digestive systems	and digestive systems	digestive systems
common human ailments	 common human ailments 	 common human ailments
during a lifetime can be	during a lifetime can be	during a lifetime can be
explained by the interaction of	explained by the interaction of	explained by the interaction of
different tissue types (for	different tissue types (for	different tissue types
example, the deterioration of	example, the deterioration of	
the nervous tissue plays a role	the nervous tissue plays a role	
in the development of	in the development of	
Alzheimer's and Parkinson's	Alzheimer's and Parkinson's	
diseases)	diseases)	
uncontrolled division of	 uncontrolled division of 	 uncontrolled division of
cells can result in the	cells can result in the	cells can result in the
development of	development of	development of
tumours/cancers	tumours/cancers	tumours/cancers
 biological theories for 	 biological theories for 	
ageing in the body (for	senescence and associated	
example, the hayflick limit,	ageing in the body (for	
oxidative damage)	example, the hayflick limit,	
	oxidative damage,	
	mitochondrial genome damage	
	and telomere shortening)	
gerontology looks at old	 gerontology looks at old 	gerontology is a growing
age, the medical problems	age, the medical problems	field of study which looks at old
specific to old age and the	specific to old age and the	age, the medical problems
aging process	aging process	specific to old age and the
		aging process
ethical and legal issues	ethical and legal issues	
associated with disease	associated with disease	
treatment and life choices (e.g.	treatment and life choices (e.g.	
euthanasia)	euthanasia)	

A guide to reading and implementing content descriptions

Content descriptions specify the knowledge, understanding and skills that students are expected to learn and that teachers are expected to teach. Teachers are required to develop a program of learning that allows students to demonstrate all the content descriptions. The lens which the teacher uses to demonstrate the content descriptions may be either guided through provision of electives within each unit or determined by the teacher when developing their program of learning.

A program of learning is what a college provides to implement the course for a subject. It is at the discretion of the teacher to emphasis some content descriptions over others. The teacher may teach additional (not listed) content provided it meets the specific unit goals. This will be informed by the student needs and interests.

Assessment

Refer to pages 13-15.

Human Health and the Environment

Human Health and the Environment a Human Health and the Environment b

Value 1.0 Value 0.5 Value 0.5

Unit Description

This unit investigates the impact of environmental conditions upon the health of humans both at the individual and population level. The World Health Organisation believes that "environmental risk factors, such as air, water and soil pollution, chemical exposures, climate change, and ultraviolet radiation, contribute to more than 100 diseases", much of which is preventable with the appropriate planning. The environmental causes of disease will be considered, based on the nature of the risk: biological, chemical, physical and social.

Students will also interrogate the environmental and demographic markers of specific chronic diseases such as the link between asbestosis and mining and malaria and living in the tropics. With climate change, the parameters that not only affect the physical environment, but also the spread of biological risks will increase the global burden of disease, particularly zoonotic diseases. Some simple solutions are promoting safe household water storage and safer management of toxic substance storage and use. Students will consider not only the expression of specific environmental diseases but also the means by which the risk can be reduced and possible solutions.

Mental health is an important aspect of human health. Good mental health will be defined. Mental illness will be described as well as its causes, symptoms and treatment. Major mental health issues that affect teenagers will be considered in order to give the content real world relevance for the students.

Through the investigation of appropriate contexts, students will explore how the physical and social environment affects health by using evidence from multiple disciplines and with the use of ICT and other technologies. Students investigate how scientific knowledge is used to offer valid explanations and reliable predictions, and the ways in which scientific knowledge interacts with social, economic, cultural and ethical factors.

Students will use their scientific inquiry skills to explore the relationship between environment and illness, by investigating real world cases and constructing and using appropriate representations in order to analyse data gathered. They also develop their skills in constructing plausible explanation and predictions for a range of environmental health issues.

Specific Unit Goals

This unit should enable students to:

A Course	T Course	M Course
 understand the links between environmental conditions and human health understand that diseases, 	 understand the links between environmental conditions and human health understand that diseases, 	 identify links between environmental conditions and human health understand the diseases,
and the response to them, can be considered on a local or global scale	and the response to them, can be considered on a local or global scale	and the response to them, can be considered on a local or global scale
• understand that changing climatic conditions will have significant effects on the incidence and spread of zoonotic diseases	 understand that changing climatic conditions will have significant effects on the incidence and spread of zoonotic diseases 	 understand that changing climatic affects the spread of disease
 understand that some mental health issues have a biological basis 	 understand that some mental health issues have a biological basis 	 understand that some mental health issues have a biological basis

• understand how some mental health issues have effects on the individual's body systems	 understand how some mental health issues have effects on the individual's body systems 	 understand that mental health issues have effects on the individual's body systems
 use science inquiry skills to conduct and communicate investigations into environmental conditions that can affect human health describe claims about the relationship between mental health and social status 	 use science inquiry skills to design, conduct, evaluate and communicate investigations into environmental conditions that can affect human health evaluate, with reference to empirical evidence, claims about the relationship between mental health and social status 	use science inquiry skills to conduct investigations
• communicate human biological understanding using qualitative representations in appropriate modes and genres	 communicate human biological understanding using qualitative and quantitative representations in appropriate modes and genres 	 communicate human biological understanding in a straightforward way

Content Descriptions

All knowledge, understanding and skills below must be delivered:

A Course	T Course	M Course
Science Inquiry Skills		
• identify and research questions for investigation; propose hypotheses; and predict possible outcomes	 identify, research and refine questions for investigation; propose hypotheses; and predict possible outcomes 	 use data to respond to questions
 design investigations, including the procedure/s to be followed, the materials required, conduct risk assessments; and consider research ethics 	 design investigations, including the procedure/s to be followed, the materials required, and the type and amount of primary and/or secondary data to be collected; conduct risk assessments; and consider research ethics 	follow instructions to conduct practicals
• conduct investigations, including monitoring body functions; using microscopy techniques; and performing dissections safely, competently and methodically for the collection of valid and reliable data	 conduct investigations, including monitoring body functions; using microscopy techniques; and performing dissections safely, competently and methodically for the collection of valid and reliable data 	• conduct investigations safely, competently and methodically

A Course	T Course	M Course
 represent data in meaningful and useful ways; organise and process data to identify trends, patterns and relationships to make conclusions 	 represent data in meaningful and useful ways; organise and process data to identify trends, patterns and relationships; qualitatively describe sources of measurement error, and uncertainty and limitations in data; and select, synthesise and use evidence to make and justify conclusions 	represent data
• interpret selected scientific and media texts, and evaluate claims and conclusions by considering the quality of available evidence; and use reasoning to construct scientific arguments	 interpret a range of scientific and media texts, and evaluate processes, claims and conclusions by considering the quality of available evidence; and use reasoning to construct scientific arguments 	 view selected scientific and media texts
• select and use appropriate representations including labelled diagrams and images of various cells, tissues, to communicate understanding, solve problems and make predictions	 select, construct and use appropriate representations including labelled diagrams and images of various cells, tissues, to communicate conceptual understanding, solve problems and make predictions 	 use appropriate representations including labelled diagrams and images of various cells, tissues, to aid understanding
• communicate to a general audience using appropriate language, nomenclature, genres and modes, including scientific reports	• communicate to specific audiences and for specific purposes using appropriate language, nomenclature, genres and modes, including scientific reports	• communicate to a general audience using appropriate language, about the topic
Science as a Human Endeavour		
• science is a global enterprise that relies on clear communication, international conventions, peer review and reproducibility	 science is a global enterprise that relies on clear communication, international conventions, peer review and reproducibility 	 science is a global enterprise
 development of complex models and/or theories often requires a wide range of evidence from multiple individuals and across disciplines 	 development of complex models and/or theories often requires a wide range of evidence from multiple individuals and across disciplines 	 development of models requires a range of evidence
 advances in science understanding in one field can influence other areas of science, technology and engineering 	 advances in science understanding in one field can influence other areas of science, technology and engineering 	 advances in science understanding in one field can influence other areas

A Course	T Course	M Course
 the use of scientific knowledge is influenced by social, economic, cultural and ethical considerations 	 the use of scientific knowledge is influenced by social, economic, cultural and ethical considerations 	
• the use of scientific knowledge may have beneficial and/or unintended consequences	 the use of scientific knowledge may have beneficial and/or harmful and/or unintended consequences 	 the use of scientific knowledge may have beneficial or unintended consequences
• scientific knowledge can enable scientists to offer valid explanations and make reliable predictions	 scientific knowledge can enable scientists to offer valid explanations and make reliable predictions 	 scientific knowledge can enable scientists to offer valid explanations and make reliable predictions
 scientific knowledge can be used to develop and evaluate projected economic, social and environmental impacts and to design action for sustainability 	 scientific knowledge can be used to develop and evaluate projected economic, social and environmental impacts and to design action for sustainability 	
Science Understanding		
 human health is increasingly impacted by environmental conditions 	 human health is increasingly impacted by environmental conditions 	 human health is impacted by environmental conditions
 environmental influences include physical, chemical and biological hazards 	 environmental influences include physical, chemical and biological hazards 	 environmental influences include physical, chemical and biological hazards
• chemical pollutants/ contaminants, such as DDT, dieldrin and other pesticides can persist in the environment and have significant, and sometimes hidden, long-term effects on human health	• chemical pollutants/ contaminants, such as DDT, dieldrin and other pesticides can persist in the environment and have significant, and sometimes hidden, long-term effects on human health	 chemical pollutants can persist in the environment and have long-term effects on human health
 black lung, asbestosis and emphysema are chronic illnesses that result from exposure to mining and industrial particulate materials 	 black lung, asbestosis and emphysema are chronic illnesses that result from exposure to mining and industrial particulate materials 	 black lung, asbestosis and emphysema are chronic illnesses that result from exposure to mining and industrial particulate materials
• since the development of the atomic bomb and nuclear power there have been significant local and regional consequences to human health as a result of exposure to radiation	• since the development of the atomic bomb and nuclear power there have been significant local and regional consequences to human health as a result of exposure to radiation	
 malaria is a life-threatening disease, caused by Plasmodium parasites transmitted by a number of mosquito species 	 malaria is a life-threatening disease, caused by Plasmodium parasites transmitted by a number of mosquito species 	 malaria is a life-threatening disease transmitted by mosquitoes

A Course	T Course	M Course
• sanitation and water treatment are a major issue for large parts of urban populations in lower economically developed countries around the world and is the source of many water-borne illnesses such as cholera, <i>Giardia, Naegleria</i> <i>Fowleri</i> and a number of worm infections	• sanitation and water treatment are a major issue for large parts of urban populations in lower economically developed countries around the world and is the source of many water-borne illnesses such as cholera, <i>Giardia, Naegleria</i> <i>Fowleri</i> and a number of worm infections	• sanitation and water treatment may be used to reduce water-borne illnesses
 diseases can occur from contact with animals (e.g. rabies, bat lyssavirus, lyme disease, toxoplasmosis, Hendra virus, tetanus, anthrax, q fever) human mobility facilitates the rapid movement of pathogens in a global 	 diseases can occur from contact with animals (e.g. rabies, bat lyssavirus, lyme disease, toxoplasmosis, Hendra virus, tetanus, anthrax, q fever) human mobility facilitates the rapid movement of pathogens in a global 	 diseases can occur from contact with animals human mobility and climate change can lead to the spread disease
 environment (for example zika virus) climate change with shifting temperature bands will mean zoonotic diseases may become common mental health can be affected by genetics, prenatal damage, infections, exposure 	 environment (for example zika virus) climate change with shifting temperature bands will mean zoonotic diseases may become common mental health can be affected by genetics, prenatal damage, infections, exposure 	 mental health can be affected by a range of factors
to toxins, brain defects or injuries and chemical imbalances • poor nutrition and the physical environment can	 to toxins, brain defects or injuries and chemical imbalances poor nutrition and the physical environment can 	 poor nutrition and the physical environment can
 affect mental health alcohol consumption during pregnancy may lead to birth defects or mental impairment eating disorders (binge 	 affect mental health alcohol consumption during pregnancy may lead to birth defects or mental impairment eating disorders (binge 	 affect mental health alcohol consumption during pregnancy may lead to birth defects or mental impairment eating disorders impact
eating disorder, anorexia nervosa, and bulimia nervosa) are common forms of mental illness that impact the digestive and skeletal systems of the human body	 eating disorders (blige eating disorder, anorexia nervosa, and bulimia nervosa) are common forms of mental illness that impact the digestive and skeletal systems of the human body statistical analysis is a useful tool for assessing trends in mental health 	how the human body works

A guide to reading and implementing content descriptions

Content descriptions specify the knowledge, understanding and skills that students are expected to learn and that teachers are expected to teach. Teachers are required to develop a program of learning that allows students to demonstrate all the content descriptions. The lens which the teacher uses to demonstrate the content descriptions may be either guided through provision of electives within each unit or determined by the teacher when developing their program of learning.

A program of learning is what a college provides to implement the course for a subject. It is at the discretion of the teacher to emphasis some content descriptions over others. The teacher may teach additional (not listed) content provided it meets the specific unit goals. This will be informed by the student needs and interests.

Assessment

Refer to pages 13-15.

Treating the Human Body Treating the Human Body a Treating the Human Body b

Unit Description

In this unit, students study the exponential growth of research and knowledge about the functioning of the human body that informs the Western mode of treating illness, and also consider alternative ways of treating illness in Australia. The veracity of alternative diagnosis and treatment methods will be interrogated. Student learning will be further enhanced through interaction with professional practitioners, wherever practical.

Diagnosis of illness involves understanding a person's symptoms and signs in order to determine an appropriate treatment. Diagnosis can be challenging because many signs and symptoms are non-specific. The exploration of both non-invasive and invasive diagnostic techniques of illness will be explored. The field of medical isotopes will also be examined. New developments, such as ICT facilitated diagnostic (e.g. MRI and CAT scans) as well as treatment (e.g. nanosurgery and stentrodes) methods will be discussed and put in historical context. Some of the evolving areas of medicine that present ethical issues, such as the use of 'service robots' in patient care and the development of antibiotic resistance, will also be studied.

Students will explore how cultural context and environment may affect the diagnosis and treatment of patients. Students investigate how scientific knowledge is used to offer valid explanations and reliable predictions, and the ways in which scientific knowledge interacts with social, economic, cultural and ethical factors.

Students will use their scientific inquiry skills to explore the principles of diagnosis and treatment of illness, by investigating real world cases. They interpret data in order to make predictions about causation and outcomes as a result of applying diagnostic techniques to symptom sets.

Specific Unit Goals

A Course	T Course	M Course
• understand that proper diagnosis of illness and diseases requires scientific evaluation and review of the symptoms	 understand that proper diagnosis of illness and diseases requires scientific evaluation and review of the symptoms 	• understand that diagnosis of illness requires a review of the symptoms
 understand that some holistic medical diagnosis and treatment have an underlying scientific basis 	 understand that some holistic medical diagnosis and treatment have an underlying scientific basis 	
 understand that medicine and new treatments are constantly being developed including significant advances by Australians 	 understand that medicine and new treatments are constantly being developed including significant advances by Australians 	 understand that medicine and new treatments are constantly being developed including significant advances by Australians
 use science inquiry skills to conduct and communicate investigations into the review of medical imaging, such as MRI and PET scan films 	 use science inquiry skills to design, conduct, evaluate and communicate investigations into the review of medical imaging, such as MRI and PET scan films 	 use science inquiry skills to conduct investigations

This unit should enable students to:

Value 1.0 Value 0.5 Value 0.5

A Course	T Course	M Course
 compare the variety of medical isotopes and their use in the diagnosis and treatment of diseases 	 evaluate, with reference to empirical evidence, the variety of medical isotopes and their use in the diagnosis and treatment of diseases 	
 communicate human biological understanding using qualitative representations in appropriate modes and genres 	 communicate human biological understanding using qualitative and quantitative representations in appropriate modes and genres 	 communicate human biological understanding in a straightforward way

Content Descriptions

A Course	T Course	M Course
Science Inquiry Skills		
 identify and research questions for investigation; propose hypotheses; and predict possible outcomes 	 identify, research and refine questions for investigation; propose hypotheses; and predict possible outcomes 	use data to respond to questions
• design investigations, including the procedure/s to be followed, the materials required, conduct risk assessments; and consider research ethics	• design investigations, including the procedure/s to be followed, the materials required, and the type and amount of primary and/or secondary data to be collected; conduct risk assessments; and consider research ethics	• follow instructions to conduct practicals
 conduct investigations, including monitoring body functions; using microscopy techniques; and performing dissections safely, competently and methodically for the collection of valid and reliable data 	 conduct investigations, including monitoring body functions; using microscopy techniques; and performing dissections safely, competently and methodically for the collection of valid and reliable data 	 conduct investigations safely, competently and methodically
 represent data in meaningful and useful ways; organise and process data to identify trends, patterns and relationships to make conclusions 	• represent data in meaningful and useful ways; organise and process data to identify trends, patterns and relationships; qualitatively describe sources of measurement error, and uncertainty and limitations in data; and select, synthesise and use evidence to make and justify conclusions	represent data
• interpret selected scientific and media texts, and evaluate claims and conclusions by considering the quality of available evidence; and use reasoning to construct scientific arguments	 interpret a range of scientific and media texts, and evaluate processes, claims and conclusions by considering the quality of available evidence; and use reasoning to construct scientific arguments 	 view selected scientific and media texts

A Course	T Course	M Course
• select and use appropriate representations including labelled diagrams and images of various cells, tissues, to communicate understanding, solve problems and make predictions	• select, construct and use appropriate representations including labelled diagrams and images of various cells, tissues, to communicate conceptual understanding, solve problems and make predictions	• use appropriate representations including labelled diagrams and images of various cells, tissues, to aid understanding
 communicate to a general audience using appropriate language, nomenclature, genres and modes, including scientific reports 	 communicate to specific audiences and for specific purposes using appropriate language, nomenclature, genres and modes, including scientific reports 	 communicate to a general audience using appropriate language, about the topic
Science as a Human Endeavour		
• science is a global enterprise that relies on clear communication, international conventions, peer review and reproducibility	 science is a global enterprise that relies on clear communication, international conventions, peer review and reproducibility 	 science is a global enterprise
 development of complex models and/or theories often requires a wide range of evidence from multiple individuals and across disciplines 	 development of complex models and/or theories often requires a wide range of evidence from multiple individuals and across disciplines 	 development of models requires a range of evidence
 advances in science understanding in one field can influence other areas of science, technology and engineering the use of scientific knowledge is influenced by social, economic, cultural and ethical considerations 	 advances in science understanding in one field can influence other areas of science, technology and engineering the use of scientific knowledge is influenced by social, economic, cultural and ethical considerations 	 advances in science understanding in one field can influence other areas
• the use of scientific knowledge may have beneficial and/or unintended consequences	 the use of scientific knowledge may have beneficial and/or harmful and/or unintended consequences 	 the use of scientific knowledge may have beneficial or unintended consequences
• scientific knowledge can enable scientists to offer valid explanations and make reliable predictions	 scientific knowledge can enable scientists to offer valid explanations and make reliable predictions 	 scientific knowledge can enable scientists to offer valid explanations and make reliable predictions
 scientific knowledge can be used to develop and evaluate projected economic, social and environmental impacts and to design action for sustainability 	 scientific knowledge can be used to develop and evaluate projected economic, social and environmental impacts and to design action for sustainability 	
Science Understanding		
 different cultures may have different belief system about the causes, diagnosis and treatment of illnesses 	 different cultures may have different belief system about the causes, diagnosis and treatment of illnesses 	 different cultures may have different belief system about the causes, diagnosis and treatment of illnesses

A Course	T Course	M Course
• the validity of ascribing causes to disease and the efficacy of treatments can be tested using the scientific method	• the validity of ascribing causes to disease and the efficacy of treatments can be tested using the scientific method	
• a range of non-invasive techniques are available to detect medical issues, including X-rays, CT scanning, PET scanning, ultrasound and MRI	 a range of non-invasive techniques are available to detect medical issues, including X-rays, CT scanning, PET scanning, ultrasound and MRI 	 range of non-invasive techniques are available to detect medical issues
 invasive techniques are required for diagnosis under certain conditions 	 invasive techniques are required for diagnosis under certain conditions 	 invasive techniques are required for diagnosis under certain conditions
 blood tests, with the analysis of cells and chemicals, can be used to determine particular conditions 	 blood tests, with the analysis of cells and chemicals, can be used to determine particular conditions 	 blood tests can be used to determine particular conditions
 faecal samples help diagnose conditions of the digestive tract whereas urinalysis is used to monitor infections in the excretory and circulatory system 	 faecal samples help diagnose conditions of the digestive tract whereas urinalysis is used to monitor infections in the excretory and circulatory system 	 faecal samples and urinalysis help diagnose some conditions
• continued technological advances resulting in new treatments for a range of medical conditions (for example nanosurgery for brain tumours and stentrodes for mind-body control in paralysed patients)		 continued technological advances resulting in new treatments for a range of medical conditions
 nuclear medicine encompasses the use of radio isotopes for both diagnostic and treatment purposes (for example, Technetium-99, lodine-101, Chromium-51) treatments of illness and disease can have unintended negative long-term impacts (e.g. 	 nuclear medicine encompasses the use of radio isotopes for both diagnostic and treatment purposes (for example, Technetium-99, lodine-101, Chromium-51) treatments of illness and disease can have unintended negative long-term impacts (e.g. 	 nuclear medicine encompasses the use of radio isotopes for both diagnostic and treatment purposes
 antibiotic resistance, thalidomide) humans have long used biotechnology for a number of purposes such as food processing and preservation 	 antibiotic resistance, thalidomide) humans have long used biotechnology for a number of purposes such as food processing and preservation 	 humans have long used biotechnology for a number of purposes such as food processing and preservation
 modern biotechnology provides a range of new developments around health care products and vaccines 	 modern biotechnology provides a range of new developments around health care products, genetic testing and treatments and vaccines 	 modern biotechnology provides a range of new developments around health care
• ethical issues arise as a result of the use of new technologies (for example, robots for patient care	• ethical issues arise as a result of the use of new technologies (for example, robots for patient care	
genome testing, gene editing and 3-D printing of body parts)	genome testing, gene editing and 3-D printing of body parts)	

A guide to reading and implementing content descriptions

Content descriptions specify the knowledge, understanding and skills that students are expected to learn and that teachers are expected to teach. Teachers are required to develop a program of learning that allows students to demonstrate all the content descriptions. The lens which the teacher uses to demonstrate the content descriptions may be either guided through provision of electives within each unit or determined by the teacher when developing their program of learning.

A program of learning is what a college provides to implement the course for a subject. It is at the discretion of the teacher to emphasis some content descriptions over others. The teacher may teach additional (not listed) content provided it meets the specific unit goals. This will be informed by the student needs and interests.

Assessment

Refer to pages 13-15.

Independent Study

Independent Study a Independent Study b

Prerequisites

Independent Study units are only available to individual students in Year 12. A student can only study a maximum of one Independent Study unit in each course. Students must have studied at least three standard 1.0 units from this course. An Independent Study unit requires the principal's written approval. Principal approval can also be sought by a student in Year 12 to enrol concurrently in an Independent Study unit and their third or fourth 1.0 unit in this course of study.

Unit Description

An Independent Study unit has an important place in senior secondary courses. It is a valuable pedagogical approach that empowers students to make decisions about their own learning. An Independent Study unit can be proposed by an individual student for their own independent study and negotiated with their teacher. The program of learning for an Independent Study unit must meet the unit goals and content descriptions as they appear in the course.

Specific Unit Goals

This unit should enable students to:

A Course	T Course	M Course
• analyse and evaluate and apply ideas, methodologies, concepts, issues and knowledge to formulate an investigation	 analyse and evaluate and apply ideas, methodologies, concepts, issues and knowledge to formulate an investigation 	
 use science inquiry skills to conduct and communicate an investigation 	 use science inquiry skills to conduct and communicate an investigation 	• use science inquiry skills to conduct and communicate an investigation
 apply ethical frameworks that underpin science inquiry reflect on the learning process 	 apply ethical frameworks that underpin science inquiry reflect on the learning process 	 reflect on the learning process
demonstrate interpersonal and communication skills	 demonstrate interpersonal and communication skills 	

Content Descriptions

All knowledge, understanding and skills below must be delivered:

A Course	T Course	M Course
Science Inquiry Skills		
 identify and research questions for investigation; propose hypotheses; and predict possible outcomes 	• identify, research and refine questions for investigation; propose hypotheses; and predict possible outcomes	 use data to respond to questions

Value 1.0 Value 0.5 Value 0.5

A Course	T Course	M Course
 design investigations, including the procedure/s to be followed, the materials required, conduct risk assessments; and consider research ethics 	 design investigations, including the procedure/s to be followed, the materials required, and the type and amount of primary and/or secondary data to be collected; conduct risk assessments; and consider research ethics 	follow instructions to conduct practicals
• conduct investigations, safely, competently and methodically for the collection of valid and reliable data	 conduct investigations, safely, competently and methodically for the collection of valid and reliable data 	 conduct investigations safely, competently and methodically
 represent data in meaningful and useful ways; organise and process data to identify trends, patterns and relationships to make conclusions 	 represent data in meaningful and useful ways; organise and process data to identify trends, patterns and relationships; qualitatively describe sources of measurement error, and uncertainty and limitations in data; and select, synthesise and use evidence to make and justify conclusions 	represent data
• interpret selected scientific and media texts, and evaluate claims and conclusions by considering the quality of available evidence; and use reasoning to construct scientific arguments	• interpret a range of scientific and media texts, and evaluate processes, claims and conclusions by considering the quality of available evidence; and use reasoning to construct scientific arguments	 view selected scientific and media texts
 select and use appropriate representations including labelled diagrams and images of various cells, tissues, to communicate understanding, solve problems and make predictions communicate to a general 	 select, construct and use appropriate representations including labelled diagrams and images of various cells, tissues, to communicate conceptual understanding, solve problems and make predictions communicate to specific 	 use appropriate representations including labelled diagrams and images of various cells, tissues, to aid understanding communicate to a
audience using appropriate language, nomenclature, genres and modes, including scientific reports	audiences and for specific purposes using appropriate language, nomenclature, genres and modes, including scientific reports	general audience using appropriate language, about the topic
Science as a Human Endeavour		
 science is a global enterprise that relies on clear communication, international conventions, peer review and reproducibility 	 science is a global enterprise that relies on clear communication, international conventions, peer review and reproducibility 	 science is a global enterprise

A Course	T Course	M Course
• development of complex models and/or theories often requires a wide range of evidence from multiple individuals and across disciplines	 development of complex models and/or theories often requires a wide range of evidence from multiple individuals and across disciplines 	 development of models requires a range of evidence
• advances in science understanding in one field can influence other areas of science, technology and engineering	 advances in science understanding in one field can influence other areas of science, technology and engineering 	 advances in science understanding in one field can influence other areas
 the use of scientific knowledge is influenced by social, economic, cultural and ethical considerations the use of scientific knowledge may have beneficial and/or unintended consequences 	 the use of scientific knowledge is influenced by social, economic, cultural and ethical considerations the use of scientific knowledge may have beneficial and/or harmful and/or unintended consequences 	 the use of scientific knowledge may have beneficial or unintended consequences
 scientific knowledge can enable scientists to offer valid explanations and make reliable predictions 	 scientific knowledge can enable scientists to offer valid explanations and make reliable predictions 	 scientific knowledge can enable scientists to offer valid explanations and make reliable predictions
 scientific knowledge can be used to develop and evaluate projected economic, social and environmental impacts and to design action for sustainability 	 scientific knowledge can be used to develop and evaluate projected economic, social and environmental impacts and to design action for sustainability 	
Science Understanding	Γ	
 negotiate with the teacher to identify a focus and formulate an inquiry program 	 negotiate with the teacher to identify a focus and formulate an inquiry program 	 negotiate with the teacher to identify a focus and formulate an inquiry program
 analyse theories, themes, models, researchers, ideas or issues informing the inquiry 	 evaluate theories, themes, models, researchers, ideas or issues informing the inquiry 	 discuss ideas or issues informing the inquiry
 reflect on learning, progress and apply feedback given throughout the inquiry process 	 reflect on learning, progress and apply feedback given throughout the inquiry process 	 reflect on learning
 select appropriate modes of communicating the inquiry and key findings 	 evaluate and select appropriate modes of communicating the inquiry and key findings 	 communicate findings

A guide to reading and implementing content descriptions

Content descriptions specify the knowledge, understanding and skills that students are expected to learn and that teachers are expected to teach. Teachers are required to develop a program of learning that allows students to demonstrate all the content descriptions. The lens which the teacher uses to demonstrate the content descriptions may be either guided through provision of electives within each unit or determined by the teacher when developing their program of learning.

A program of learning is what a college provides to implement the course for a subject. It is at the discretion of the teacher to emphasis some content descriptions over others. The teacher may teach additional (not listed) content provided it meets the specific unit goals. This will be informed by the student needs and interests.

Assessment

Refer to pages 13-15.

Appendix A – Implementation Guidelines

Available course patterns

A standard 1.0 value unit is delivered over at least 55 hours. To be awarded a course, students must complete at least the minimum units over the whole minor, major, major/minor or double major course.

Course	Number of standard units to meet course requirements
Minor	Minimum of 2 units
Major	Minimum of 3.5 units

Units in this course can be delivered in any order.

Prerequisites for the course or units within the course

Students must have studied at least three standard 1.0 units from this course in order to access the Independent Study unit. An Independent Study unit requires the principal's written approval. Principal approval can also be sought by a student in Year 12 to enrol concurrently in an Independent Study unit and their third or fourth 1.0 unit in this course of study.

Arrangements for students continuing study in this course

Students who have completed a minor in their existing NARC Human Biology Type 1 course may study units in the Human Biology A/T/M Course providing that there is no duplication of content.

Duplication of Content Rules

Students cannot be given credit towards the requirements for a Senior Secondary Certificate for a unit that significantly duplicates content in a unit studied in another course. The responsibility for preventing undesirable overlap of content studied by a student, rests with the principal and the teacher delivering the course. Students will only be given credit for covering the content once.

Duplication of Units

Growth of Humans and Modern Medicine are variations of combinations of 0.5 units, Embryonic Development of tissue, Study of Human Tissue, Human Reproduction, Illness and Age, Environmental Health, Mental Health, Diagnosis and Treatment, Cutting Edge Medicine.

Units from other courses

No units from other courses can be included in this Human Biology course.

Relationship to other courses

Nil.

Guidelines for Delivery

Program of Learning

A program of learning is what a school provides to implement the course for a subject. This meets the requirements for context, scope and sequence set out in the Board endorsed course. Students follow programs of learning in a college as part of their senior secondary studies. The detail, design and layout of a program of learning are a college decision.

The program of learning must be documented to show the planned learning activities and experiences that meet the needs of particular groups of students, taking into account their interests, prior knowledge, abilities and backgrounds. The program of learning is a record of the learning experiences that enable students to achieve the knowledge, understanding and skills of the content descriptions. There is no requirement to submit a program of learning to the OBSSS for approval. The Principal will need to sign off at the end of Year 12 that courses have been delivered as accredited.

Content Descriptions

Are all content descriptions of equal importance? No. It depends on the focus of study. Teachers can customise their program of learning to meet their own students' needs, adding additional content descriptions if desired or emphasising some over others. A teacher must balance student needs with their responsibility to teach all content descriptions. It is mandatory that teachers address all content descriptions and that students engage with all content descriptions.

Half standard 0.5 units

Half standard units appear on the course adoption form but are not explicitly documented in courses. It is at the discretion of the college principal to split a standard 1.0 unit into two half standard 0.5 units. Colleges are required to adopt the half standard 0.5 units. However, colleges are not required to submit explicit documentation outlining their half standard 0.5 units to the BSSS. Colleges must assess students using the half standard 0.5 assessment task weightings outlined in the framework. It is the responsibility of the college principal to ensure that all content is delivered in units approved by the Board.

Moderation

Moderation is a system designed and implemented to:

- provide comparability in the system of school-based assessment
- form the basis for valid and reliable assessment in senior secondary schools
- involve the ACT Board of Senior Secondary Studies and colleges in cooperation and partnership
- maintain the quality of school-based assessment and the credibility, validity and acceptability of Board certificates.

Moderation commences within individual colleges. Teachers develop assessment programs and instruments, apply assessment criteria, and allocate Unit Grades, according to the relevant Course Framework. Teachers within course teaching groups conduct consensus discussions to moderate marking or grading of individual assessment instruments and unit grade decisions.

The Moderation Model

Moderation within the ACT encompasses structured, consensus-based peer review of Unit Grades for all accredited courses over two Moderation Days. In addition to Moderation Days, there is statistical moderation of course scores, including small group procedures, for T courses.

Moderation by Structured, Consensus-based Peer Review

Consensus-based peer review involves the review of student work against system wide criteria and standards and the validation of Unit Grades. This is done by matching student performance with the criteria and standards outlined in the Achievement Standards, as stated in the Framework. Advice is then given to colleges to assist teachers with, or confirm, their judgments. In addition, feedback is given on the construction of assessment instruments.

Preparation for Structured, Consensus-based Peer Review

Each year, teachers of Year 11 are asked to retain originals or copies of student work completed in Semester 2. Similarly, teachers of a Year 12 class should retain originals or copies of student work completed in Semester 1. Assessment and other documentation required by the Office of the Board of Senior Secondary Studies should also be kept. Year 11 work from Semester 2 of the previous year is presented for review at Moderation Day 1 in March, and Year 12 work from Semester 1 is presented for review at Moderation Day 2 in August.

In the lead up to Moderation Day, a College Course Presentation (comprised of a document folder and a set of student portfolios) is prepared for each A, T and M course/units offered by the school and is sent into the Office of the Board of Senior Secondary Studies.

The College Course Presentation

The package of materials (College Course Presentation) presented by a college for review on Moderation Days in each course area will comprise the following:

- a folder containing supporting documentation as requested by the Office of the Board through memoranda to colleges, including marking schemes and rubrics for each assessment item
- a set of student portfolios containing marked and/or graded written and non-written assessment responses and completed criteria and standards feedback forms. Evidence of all assessment responses on which the Unit Grade decision has been made is to be included in the student review portfolios.

Specific requirements for subject areas and types of evidence to be presented for each Moderation Day will be outlined by the Board Secretariat through the *Requirements for Moderation Memoranda* and Information Papers.

Visual evidence for judgements made about practical performances

It is a requirement that schools' judgements of standards to practical performances (A-T-M) be supported by visual evidence (still photos or video).

The photographic evidence submitted must be drawn from practical skills performed as part of the assessment process.

Teachers should consult the BSSS website for current information regarding all moderation requirements including subject specific and photographic evidence.

Appendix B – Course Developers

Name	College
Dinu Chellakudam	Narrabundah College
Joan Knowles	Narrabundah College
Cate Rosier	Narrabundah College
Bongiwe Tabi	Narrabundah College

Appendix C – Common Curriculum Elements

Common curriculum elements assist in the development of high-quality assessment tasks by encouraging breadth and depth and discrimination in levels of achievement.

Organisers	Elements	Examples
create, compose and apply	apply	ideas and procedures in unfamiliar situations, content and processes in non-routine settings
	compose	oral, written and multimodal texts, music, visual images, responses to complex topics, new outcomes
	represent	images, symbols or signs
	create	creative thinking to identify areas for change, growth and innovation, recognise opportunities, experiment to achieve innovative solutions, construct objects, imagine alternatives
	manipulate	images, text, data, points of view
analyse,	justify	arguments, points of view, phenomena, choices
synthesise and	hypothesise	statement/theory that can be tested by data
evaluate	extrapolate	trends, cause/effect, impact of a decision
	predict	data, trends, inferences
	evaluate	text, images, points of view, solutions, phenomenon, graphics
	test	validity of assumptions, ideas, procedures, strategies
	argue	trends, cause/effect, strengths and weaknesses
	reflect	on strengths and weaknesses
	synthesise	data and knowledge, points of view from several sources
	analyse	text, images, graphs, data, points of view
	examine	data, visual images, arguments, points of view
	investigate	issues, problems
organise,	sequence	text, data, relationships, arguments, patterns
sequence and	visualise	trends, futures, patterns, cause and effect
explain	compare/contrast	data, visual images, arguments, points of view
	discuss	issues, data, relationships, choices/options
	interpret	symbols, text, images, graphs
	explain	explicit/implicit assumptions, bias, themes/arguments, cause/effect, strengths/weaknesses
	translate	data, visual images, arguments, points of view
	assess	probabilities, choices/options
	select	main points, words, ideas in text
identify,	reproduce	information, data, words, images, graphics
summarise and	respond	data, visual images, arguments, points of view
plan	relate	events, processes, situations
	demonstrate	probabilities, choices/options
	describe	data, visual images, arguments, points of view
	plan	strategies, ideas in text, arguments
	classify	information, data, words, images
	identify	spatial relationships, patterns, interrelationships
	summarise	main points, words, ideas in text, review, draft and edit

Appendix D – Glossary of Verbs

Verbs	Definition
Analyse	Consider in detail for the purpose of finding meaning or relationships, and identifying patterns, similarities and differences
Apply	Use, utilise or employ in a particular situation
Argue	Give reasons for or against something
Assess	Make a judgement about the value of
Classify	Arrange into named categories in order to sort, group or identify
Compare	Estimate, measure or note how things are similar or dissimilar
Compose	The activity that occurs when students produce written, spoken, or visual texts
Contrast	Compare in such a way as to emphasise differences
Create	Bring into existence, to originate
Critically analyse	Analysis that engages with criticism and existing debate on the issue
Demonstrate	Give a practical exhibition an explanation
Describe	Give an account of characteristics or features
Discuss	Talk or write about a topic, taking into account different issues or ideas
Evaluate	Examine and judge the merit or significance of something
Examine	Determine the nature or condition of
Explain	Provide additional information that demonstrates understanding of reasoning and /or application
Extrapolate	Infer from what is known
Hypothesise	Put forward a supposition or conjecture to account for certain facts and used as a basis for further investigation by which it may be proved or disproved
Identify	Recognise and name
Interpret	Draw meaning from
Investigate	Planning, inquiry into and drawing conclusions about
Justify	Show how argument or conclusion is right or reasonable
Manipulate	Adapt or change
Plan	Strategize, develop a series of steps, processes
Predict	Suggest what might happen in the future or as a consequence of something
Reflect	The thought process by which students develop an understanding and appreciation of their own learning. This process draws on both cognitive and affective experience
Relate	Tell or report about happenings, events or circumstances
Represent	Use words, images, symbols or signs to convey meaning
Reproduce	Copy or make close imitation
Respond	React to a person or text
Select	Choose in preference to another or others
Sequence	Arrange in order
Summarise	Give a brief statement of the main points
Synthesise	Combine elements (information/ideas/components) into a coherent whole
Test	Examine qualities or abilities
Translate	Express in another language or form, or in simpler terms
Visualise	The ability to decode, interpret, create, question, challenge and evaluate texts that communicate with visual images as well as, or rather than, words

Appendix E – Glossary for ACT Senior Secondary Curriculum

Courses will detail what teachers are expected to teach and students are expected to learn for year 11 and 12. They will describe the knowledge, understanding and skills that students will be expected to develop for each learning area across the years of schooling.

Learning areas are broad areas of the curriculum, including English, mathematics, science, the arts, languages, health and physical education.

A **subject** is a discrete area of study that is part of a learning area. There may be one or more subjects in a single learning area.

Frameworks are system documents for Years 11 and 12 which provide the basis for the development and accreditation of any course within a designated learning area. In addition, frameworks provide a common basis for assessment, moderation and reporting of student outcomes in courses based on the framework.

The **course** sets out the requirements for the implementation of a subject. Key elements of a course include the rationale, goals, content descriptions, assessment, and achievement standards as designated by the framework.

BSSS courses will be organised into units. A unit is a distinct focus of study within a course. A standard 1.0 unit is delivered for a minimum of 55 hours generally over one semester.

Core units are foundational units that provide students with the breadth of the subject.

Additional units are avenues of learning that cannot be provided for within the four core 1.0 standard units by an adjustment to the program of learning.

An **Independent Study unit** is a pedagogical approach that empowers students to make decisions about their own learning. Independent Study units can be proposed by a student and negotiated with their teacher but must meet the specific unit goals and content descriptions as they appear in the course.

An **elective** is a lens for demonstrating the content descriptions within a standard 1.0 or half standard 0.5 unit.

A lens is a particular focus or viewpoint within a broader study.

Content descriptions refer to the subject-based knowledge, understanding and skills to be taught and learned.

A **program of learning** is what a college develops to implement the course for a subject and to ensure that the content descriptions are taught and learned.

Achievement standards provide an indication of typical performance at five different levels (corresponding to grades A to E) following completion of study of senior secondary course content for units in a subject.

ACT senior secondary system **curriculum** comprises all BSSS approved courses of study.

Appendix F – Course Adoption

Conditions of Adoption

The course and units of this course are consistent with the philosophy and goals of the college and the adopting college has the human and physical resources to implement the course.

Adoption Process

Course adoption must be initiated electronically by an email from the principal or their nominated delegate to <u>bssscertification@ed.act.edu.au</u>. A nominated delegate must CC the principal.

The email will include the **Conditions of Adoption** statement above, and the table below adding the **College** name, and circling the **Classification/s** required.

College:	
Course Title:	Human Biology
Classification/s:	A T M
Accredited from:	2017
Framework:	Science