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Preface

Tertiary admission for immediate school leavers in Australia has been selective for a couple
of decades. Selection has been based on “relative academic merit” as calculated by a variety of
methods from either or both of public examination marks and school-based assessments. It is
not easy to locate documents describing the computations used in the different states, and it is
even harder to find self-contained and self-consistent accounts of the rationale used to justify the
numerical procedures that are followed. Cooney’s (1976) review is not of much assistance on matters
of detail. What is readily acknowledged is that “statistically based procedures” are used, but as
e.g. Masters and Beswick (1986, §2.32) observed,

“A weakness of scaling procedures in use in every system in Australia is that they are not
supervised by an explicit statistical model for score equating and aggregation.”

It is almost as difficult to ascertain what different perceptions the various educational authori-
ties have as to what is involved in determining “relative academic merit”. To a fair extent, methods
have evolved on an ad hoc basis, as the quotation above may indicate. Where all systems agree
is that there are technical considerations involved, though in the case of the Australian Capital
Territory the attitude to this aspect has been largely to keep the technical people distant from
the decision making bodies, as if the former are unable to appreciate educational principles. Two
specific statements from the more deliberative venue of reports are worth noting:

“Simplicity may be beguiling . . . Statistical complexity may obfuscate the process for
the public . . . The critical consideration, however, should not be simplicity or complexity
but fairness.” (Making Admission to Higher Education Fairer, §4.19)
“It is sometimes assumed in the education field, if not others, that the adequacy of a
system is measured by the ready comprehensibility of its technical details . . . The
Working Party has chosen the approach that what should be readily understood are the
principles on which the system is based . . . It has proved impossible to devise a system
that both discharges some worthwhile principles and also has no technical aspects of
greater complexity than can be explained to a general audience in a few words.” (Tertiary
Entrance in Queensland: A Review, Report of the Working Party on Tertiary Entrance,
Board of Secondary School Studies, Brisbane, July 1987, p.123.)

My background in the language of mathematics and statistics is more extensive than that of
some of my predecessors who have written reports on TE score construction for the ACT Schools
Accrediting Agency. For this reason and because I have been asked for a statement of the theoretical
basis for the Method-of-Moment scaling procedure, I address – and gladly – some of the technical
issues behind the construction of Tertiary Entrance scores. From this stance, some previous reports
have aspects which are deficient, so given my brief I have noted some of these shortcomings.

A general attitude that motivates our discussion is an attempt to understand and describe
simple general mathematical structures such as underlie the Queensland TE score algorithm on
which the ACT’s algorithm is based. In the report, I use such a structure to describe idealized
versions of data sets such as ACT students’ course scores. I explore the consequences of assuming,
first that the data have this structure, and then that they deviate from it in as extreme a manner as
is consistent with the type of data sets we actually see. In pragmatic terms this exploration shows
that the initial simplifying assumptions do not have significant consequences for the computations
devised assuming that the model is “true”.
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iv Preface

Our discussion is starts from a set of basic assumptions and principles which guide our analyses
and the development of our procedures. Chapter 1 is an introduction and extended summary
containing no mathematics. It includes our recommendations. Any disputation of these conclusions
should be based on both the initial premisses and the body of the report. While it may be daunting
to be presented with “conclusions” before the evidence and/or argument has been given, it is one
way of providing the lay reader with a lengthier account than the more tersely written non-technical
summary. This is followed by the various Conclusions that are stated more formally through the
report.

Subsequent chapters have much that is devoid of any algebra, if this is what is regarded as
being “technical” language. We try to follow a logical development, and attempt to underline
the significance of any conclusions that are not self-evident. Certain material that is either more
technical or not readily available is included in various appendices, in the hope that they may be
of at least the same use as appendices in other reports that I have used over the past few years.

At the outset it was clear that all data analyses should be executed on a personal computer.
I looked for compatibility with IBM PC’s as these are generally available and are well suited to
the intensive numerical work entailed in some of the operations required in a study of a scaling
procedure.

The ACT Schools Accrediting Agency supplied1 me with 1986 data (course, ASAT, and TE
score information) in August 1987. These fitted onto three standard PC diskettes. The data
files were used in a still more compact format to facilitate rapid execution: even for the largest
college (the college was the module for most computational purposes), it was possible to compress
the data enough to run all the Fortran programmes written for non-standard analyses without
exceeding the data default size limitation of 64Kb, enabling speedy numerical processing with
minimal input/output delays. I have used IBM PC AT computers or clones of them with 640K
RAM and 80287 coprocessor; less RAM may suffice, but I have not tested this aspect. I used the
statistical package SYSTAT for several routine procedures.

I thank many people for assisting in the development of this report. Ms. Yvonne Pytelkow
helped in transcribing the data supplied on tape via Mr. R. Edwards of the ACT Schools Accrediting
Agency; he also gave other detailed information, and after three iterations the experimental routines
developed for studying the scaling procedure yielded input parameters for him to use in existing
computer programs of the ACT Schools Authority that lead to the annual Year 12 Study. Mr. Reg
Allen of the Queensland BSSS has been a helpful and sympathetic colleague in the later stages, as
also was Mr. George Morgan of ACER. Mr. J. C. Daley has given invaluable editorial assistance.
The work was begun while visiting the University of North Carolina at Chapel Hill and concluded
in Canberra.

Finally, I pay tribute here to the quiet tenacity of Mrs. Joan Robson, formerly of St. Clare’s
College. Much in this report has come about because of her intuition, data-based insights, and
insistence from 1977 on that all is not well with the ACT TE score.

D. J. Daley, Canberra, January 1989

1 Tapes of 1987 data have been provided on 15 December 1988, but with different content from the 1986
tapes. I was given a second set of tapes on 13 January 1989, but still missing some information. Several
analyses summarized in this report should be replicated on 1987 data — and maybe 1988 as well — and
noted in a sequel.
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Non-technical Summary

Cautionary remark. This report is about scaling scores that can be school-based assessments
of relative achievement, or examination marks, or a combination of both. To the extent that
this topic has a strong technical aspect—hence this non-technical summary—neither this short
summary nor the introduction is any substitute for the report proper when it comes to matters
of argument.

“It is sometimes assumed in the educational field, if not others, that the adequacy of a
system is measured by the ready comprehensibility of its technical details . . . [This]
Working Party has chosen the approach that what should be readily understood are the
principles on which the system is based . . . It has proved impossible to devise a
system that both discharges some worthwhile principles and also has no technical aspects
of greater complexity than can be explained to a general audience in a few words.” (pp.

123–124 of Tertiary Entrance in Queensland: A Review, July, 1987)

The essence of this report is the provision of advice concerning the methodology and procedures
that are or might be used to construct a Tertiary Entrance (TE) score in the Australian Capital
Territory (ACT).

The report starts in Chapter 1 with a statement of Principles and Assumptions that supposedly
underlie the current procedure. All except the last either reflect policy principles or are consistent
with properties of data representing relative student achievement in the upper secondary school
level curriculum, whether from the ACT or Queensland or New South Wales or any other Australian
state or . . . , and whether school-based or public examination based or a combination of both.

Chapter 1 gives a general introduction and longer summary of the report, non-technical in
the sense of no algebra. Chapter 2 gives a theoretical analysis of an idealized data set which is
complemented in Chapter 3 by a description of a model that is more flexible and copes with real
data sets. The combination of these two gives a framework within which the Principles listed
at the outset can be translated into a practical algorithm or numerical procedure to produce a
Tertiary Admissions Index like the present TE score, within any college. It leads to the conclusion,
supported by empirical work in Chapters 7, 8 and 10, that the present method for producing TE
scores is unnecessarily shoddy, reflecting its origins as a “quick-fix” solution to a problem. It is
made shoddy by its excessive dependence on Australian Scholastic Aptitude Test (ASAT) scores.
Examples of three “TE scores” in Chapter 12 show that this shoddiness has consequences for
appreciable proportions of students admitted by tertiary institutions. The major source of this
shoddiness is the discrepancy between ASAT scores as measures of “developed general ability” and
the school-based scores used to give a measure of “relative general achievement”.

The ACT and Queensland systems are distinguished from the rest of Australia by an absence
of system-wide public examinations. As substitutes for establishing some system-wide measures
of academic achievement, ASAT sub-scale and (more recently) Writing Task scores are used in
a statistical scaling procedure that is not as consistent with the policy principles as an Optimal
Other Course score Scaling Procedure that is described in Chapter 11 up to limits imposed by a
Research Supervisory Committee. In Chapter 4 we show how to find an optimal mixture of these
three sub-scale scores for use as a reference scale for all colleges.

Finally, the effect of producing Tertiary Admission Indices by such a better method is shown
to have little effect on the more basic and transparent sex bias inequity that has plagued TE scores
since their inception in 1977, despite various relatively ineffectual attempts to rectify the matter
in 1983, 1984 and 1986. A statistical remedy is at present the only practicable one, yet successive
Committees have shied away from it seemingly from fear of upsetting a public that may then
clamour for the return of greater external assessment and accountability of the system.
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Non-technical Summary ix

Like Masters & Beswick (1986)2, I recognize that the assumption that a one-factor model de-
scribes the data adequately is open to question. Such a model is purportedly the basis of the existing
scaling procedure or algorithm which has been used with various modifications to produce ACT TE
scores in the period 1977–87. Both theoretically and empirically, that algorithm is shoddy relative
to an optimal procedure based on the same model but having superior properties with respect to
both unbiasedness and precision (meaning here, faithfulness to the data within the limits attainable
due to basic “measurement errors”).

Unlike Masters & Beswick, I have asked what are the effects of assuming a more complex mul-
tidimensional model description for the data, and used tools of theory, “typical” data parameters,
and empirical studies to answer that question. The interpretation of a Tertiary Entrance score as
a (relative) measure of general academic achievement can be retained, albeit that it is now to be
viewed as a measure that reflects, approximately uniformly for all students, a mixture of both their
general achievement measure and the extent of departure of their achievements in the area(s) where
these may be stronger and more specialized. Neither the theory nor the empirical studies can pro-
duce evidence of the introduction of biases through the statistically based procedure as suggested
but not proved in any way by Masters and Beswick (their empirical analyses were fundamentally
flawed by data-selection effects and taking no account of the actual structure of the data, in spite
of having shown they were aware of part of that structure when they wrote a report in 1985). In
other words, using the optimal algorithm for constructing Tertiary Entrance scores on the basis of
the one-factor model but applying it to a multidimensional model with “typical” data parameter
values, makes little difference to the fairness of the general achievement measure being produced.

What emerges from combining the empirical and theoretical studies is a reinforcement of
a recommendation of 1985 to the ACT Schools Accrediting Agency or Secretariat that (1) the
existing algorithm for calculating two parameters for each course (= moderation group) so as to
“place all course scores on a common scale” should be replaced by the superior method-of-moment
procedure. This requires also (2) the use of suitable statistical techniques to enforce compliance
by ASAT scores with the assumptions made about their joint properties with course scores, as
without such compliance the claims currently made for the integrity of TE scores constitute gross
exaggerations.

The effect of these recommendations will be the production of TE scores which have consid-
erably smaller biases and increased precision, and are also more faithful to the proclaimed policy
dictum that “ACT TE scores reflect school-based assessments”. If there is belief in this policy
dictum, then the existing scaling procedure should be scrapped immediately in favour of one based
on the Method-of-Moment procedure, coupled with statistical measures to control the excessive de-
viations of ASAT scores: it has been amply demonstrated over the past decade that these excesses
are beyond control by the prescriptive methods which have been tried ad nauseam.

Some of the conclusions which the analyses of the data have thrown up may be as unpalatable
as the existence of a gender-linked sex bias between ASAT and school-based assessments has proved
to be (and, as an aside, note that the bias persisted in 1986 and 1987, albeit at levels lower than
what they would have been without the introduction of a Writing Task). Whatever, the data can
only be allowed to speak for themselves, and I have not seen my task as involving the deliberate
inclusion or exclusion of information whose content is unaltered by wishful thinking. In any case,
the conclusions reached in this report via analyses on full data sets, simply confirm much of what
can be deduced from the summary data published each year in the Year 12 Study.

“Simplicity may be beguiling . . . Statistical complexity may obfuscate the process for the public . . . The

critical consideration, however, should not be simplicity or complexity but fairness.” (MATHEF, §4.19).

2 G. N. Masters & D. G. Beswick (1986). The Construction of Tertiary Entrance Scores: Principles and

Issues. Centre for the Study of Higher Education, University of Melbourne.



DETERMINING RELATIVE ACADEMIC

ACHIEVEMENT FOR FAIR ADMISSION

TO HIGHER EDUCATION

“CONCLUSION” STATEMENTS

1.1. If a composite measure of relative general academic achievement is to be constructed on the
basis of several particular measures of achievement like exam. marks, then

(A) it is statistically acceptable that it be an aggregate of scaled marks; and

(B) the scaling should be determined internally by the set of marks in conjunction with the method-
of-moment estimation procedure;

(C) an aggregate of marks determined via (B) is also educationally acceptable.

2.1. A ranking determined by aggregates from data sets such as X is basically a ranking determined
by the first principal components {Ui1} in the principal component representation.

REMARK 2.1. Conclusion 2.1 does not depend on any of the statistical modelling assumptions to
be discussed in Chapter 3.

2.2. When all students follow a common curriculum, the construction of a “bestm subset” aggregate
from course scores X ≡ {Xij} most faithfully represents the principle P 1 that students’ curriculum
choices should not affect their TE scores when student i′s scores Xi = (Xi1 · · · Xin)

′ are rescaled
to scores Yi = (Yi1 · · · Yin)

′ via relations

Yij = βjXij

for constants βj such that the matrix B
∑

X B with B = diag({βj}) and
∑

X the covariance matrix
of X has e/

√
n ≡ (1/

√
n · · · 1/√n)′ for the eigenvector associated with its largest eigenvalue.

2.3. The scaling constants βj of Conclusion 2.2 are determined uniquely apart from a multiplicative
constant, and there is a convergent iterative procedure to determine them.

2.4. Constructing a general achievement index from independence assumptions and a quasi-Rasch
model that uses course scores as parameters leads to the same starting point as the beginning of
Chapter 2.

3.1. The Method-of-Moment estimation procedure for finding scale parameters yields the same
estimators as under a principal component analysis when the data set is a balanced set as in
Chapter 2.

3.2. For practical purposes, fitting a data set having a two-factor structure as at (3.14) by the
Method-of-Moment estimation procedure valid for scaling a one-factor model results in negligible
differences in the aggregate scores produced from the original and scaled data sets.

4.1. In terms of providing a better reference scale, the introduction of the Writing Task in 1986
was a success.

4.2. Each year, the optimal predictive combination of system-wide reference scores should be
constructed to produce a single system-wide reference measure of general ability in the “dimension”
of school-based general achievement measures.

x



‘Conclusion’ Statements xi

4.3. The coherence between course scores and even optimally constructed “Total ASAT score” to
be used as a reference scale, varies significantly between colleges.

REMARK 4.1. The ACT system already uses Other Course Score scaling criteria.

4.4. Reference scale scores and course scores should be treated as a single data set for scaling
purposes using the Method-of-Moment estimation procedure to find the scale parameters (β βA)
with a weight factor wA attached to the reference scale scores given by (4.29), and the normalization
constant for (β βA) determined by setting βA = 1.

4.5. The multivariate data set approach of Conclusion 4.3 coincides with the two-stage approach
of constructing school-based estimates of relative general achievement within a college, and subse-
quently combining these optimally with an external set of reference scores to produce system-wide
estimates of relative general achievement.

4.6. The one-step procedure of the Method-of-Moment estimation procedure can be dissected so as
to furnish colleges, if they so desire, with approximate “within-college” estimates of their students’
relative general achievements or “within-college” TE scores, at any time that a school-based set of
quasi-course scores is known. In particular, a purely school-based set of general achievement scores
can be furnished, but such scores would have no between-school comparability. Such estimates
would be subject to minor adjustment at a final stage when system-wide reference scores are
determined and made known.

4.7. The present statistical use of ASAT scores lacks attention to critical detail. Scrutiny shows
that the data deviate excessively from the assumed close relationships. Without these relationships,
further checks and adjustments are necessary to justify the statistical use of ASAT scores.

4.8. In terms of both face validity and modelling considerations, Other Course Score scaling is
both consistent with a model aimed at producing a single aggregate and with yielding an aggregate
free(r) of bias from selection effects.

5.1. The units of the integer-valued sub-scale scores Q , V and W corresponded in 1986 to 12%,
17% and 30% of their respective standard deviations. The measurement error standard deviations
of these scores are about 4 units for Q and V , and 2 to 3 units for W .

5.2. For the purpose for which ASAT scores are used in the ACT, neither they nor the Quantitative
and Verbal sub-scale scores are psychometrically stable with respect to gender differences in different
years.

6.1. Students’ relative abilities as assessed by multiple choice methods in the ASAT test and re-
ported on Quantitative and Verbal sub-scales, are positively correlated with but differ systematically
from school-based determinations of their relative achievementsin the related areas of Mathemat-
ics and English respectively, this difference being a characteristic of the two modes of assessment
used in the two pairs of scores. Irrespective of the Quantitative or Verbal “dimension” concerned,
females tend to perform relatively better on the school-based measures and males on the ASAT
test.

6.2. On the basis of the TE score construction principles P 2–4, Conclusion 6.1 implies that ASAT
scores are biased for use as reference scores in the ACT. If similar principles hold in Queensland,
the same conclusion holds there also.

6.3. Analysis based on a linear representation gives no evidence of association between the gender-
linked discrepancy between course and ASAT scores and the known gender-linked difference in
verbal and quantitative skills.



xii ‘Conclusion’ Statements

6.4. Test results for both 1986 and 1987 revealed systematic differences in assessment by essay-
writing and by multiple choice tests, with respect to both sex and school type.

7.1. The gender-linked discrepancies between ASAT and course scores that result in gender-linked
biases in Tertiary Entrance scores reflect different processes for measuring educational properties.
The discrepancies are not a statistical artefact of the process of aggregation.

7.2. ASAT scores, with or without Writing Task scores, are not sufficiently positively correlated
with school-based assessments to justify rescaling course scores or general achievement measures
without considering the necessity for their calibration to remove the gender-linked discrepancy
between them and course scores. Calibrated scores have higher correlations with school-based
scores. Other action to check on outlier scores may marginally affect the discrepancy measure.

8.1. The imprecision in a TE score is affected by choice of scaling procedure. Amongst procedures
based on a one-factor model for the data, this imprecision is least when an Other Course Score
procedure is used. The scaling parameters are model-unbiased when they are estimated by Method-
of-Moments.

8.2. The major source of computational imprecision in TE score construction is associated with the
use of ASAT scores. This imprecision can be considerably worsened by using the existing bivariate
adjustment approach rather than the more direct estimation approach in a one-factor model for
multivariate data.

9.1. The use of ASAT sub-scale scores as in the 1986 ACT scaling procedure for constructing TE
scores contravenes Principle P 1.

9.2. Consideration should be given to redefining a TE score as the sum of a student’s best 4.5
course scores, conditional on the inclusion of at least three Major course scores, where a Minor
course has a weight of 0.5 in place of 0.6, and where a Total ASAT Score with components from
the Quantitative and Verbal sub-scales and the Writing Task, may be included in this 4.5 course
score total by regarding the score as having the weight of a Minor course.

10.1. Other Course Score scaling procedures have considerably smaller error mean squares than
ASAT scaling procedures, and are therefore superior procedures in general.

11.1. On the basis of what is presently known, there are four steps required to construct a TE score
as fairly as possible via a set of linear transformations of school-based scores, consistent with the
Basic Assumptions and Principles for Constructing TE scores:

(1) Determination of scaling parameters via Method-of-Moment estimation using Other Course
Scores as the basis of the scaling criterion variables, in conjunction with (2)–(4) below.

(2) Removal of the gender-linked bias in ASAT scores.

(3) Reduction of the effects of outlier scores (this may overlap with (2)).

(4) Fixing suitable weights for ASAT- (or whatever-) based reference scale scores in relation to
non-statistically determined course scores, as for example with small groups.

12.1. The use of a particular scaling procedure can have considerable influence on the set of
students meeting a TE score based selection criterion, particularly in the more selective groups. In
comparison with the OptOCSP, the 1986–88 procedure is most noticeably discrepant, even before
the removal of the gender-linked bias.
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12.2. Using more than one reference scale implies that optimal subject choices can increase a
student’s TE score via statistical properties of a scaling procedure. Such choices may be contrary
to “educationally desirable” curriculum construction.

12.3. Correlation coefficients do not usefully summarize differences in TE scores resulting from
different scaling procedures.

12.4. No systematic bias effects are observable in the moderation group parameters computed via
the Optimal Other Course Score Scaling Procedure.

13.1. The 1977–85 scaling procedure and the model described by equations (13.1)–(13.3) are not
mutually consistent.

13.2. The major component of an ACT data set needing statistical scrutiny to ensure fair use of a
statistical scaling procedure is the set of ASAT scores.

13.3. The existing scaling parameter equations (13.4)–(13.5) are not justified by Model 1 but are
supported weakly by Model 2, i.e., a one-factor model. Method-of-Moment estimators with Other
Course Score scaling gives a far more consistent fit to the one-factor model description of the data.

13.4. If multiple aggregates are constructed within restricted subsets of courses, the principles
of Other Course score scaling using Method-of-Moment estimators and construction and use of
reference scales as in Chapters 4–7, apply.



CHAPTER 1

Introduction and Summary

Mathematics and statistics:

languages for science and social science

The Project as Assigned

The task I have been assigned is part of a research programme continuing on from the 1986
Report Making Admission to Higher Education Fairer, referred to as MATHEF below. This report
was prepared by a Review Committee set up in response to the following:

“One major concern about the current method of calculation of Tertiary Entrance Scores
in the Australian Capital Territory gave rise to this inquiry. It was a concern that the
process is biased against females who are taught and assessed in groups that contain no
males, [being] greatest for females in single-sex schools.” (MATHEF, §1.1)
I have been asked by a 1986–87 Supervisory Committee1 generally

“to determine whether a [certain scaling procedure can] provide a statistically and educa-
tionally acceptable basis for continuing to produce a single aggregate Tertiary Entrance
Score”.

In particular I have been asked

(1) to state the theoretical basis of [a certain scaling] procedure . . . ; a clear statement of the
algorithm . . . should be provided;

(2) [to supply data on the procedure to the ACT Schools Accrediting Agency] for checking pur-
poses; and

(3) [to provide] data . . . comparing results [from different scaling procedures].

I responded to (2) in September 1988 by giving enough data from “a certain scaling procedure”
to the ACT Schools Accrediting Agency to construct tables analogous to those that are published
in each Year 12 Study. More informative examples of different Tertiary Entrance scores produced
by different scaling procedures are given in Chapter 12, together with comparisons of their scaling
parameters.

This introduction serves as a long summary of the report and is deliberately devoid of algebra
(though not of technical ideas). It refers to the theory requested in (1), gives summaries of data
analyses that are essential to provide some check that the theoretical results are applicable to ACT
data, and applies the theory, completing the response to (1) and (3) to the extent that it is feasible.

A statement of principles and assumptions for constructing Tertiary Entrance scores in the
ACT is given only in this chapter, as part of the general background.

The contents of this report are determined both by the nature of the data and the project, and
by the implied constraints of the Supervisory Committee as to how they saw the matter through

1 A short name for a three-member committee established jointly in late 1986 by the Australian National

University, the Canberra College of Advanced Education, and the Australian Capital Territory Schools Au-

thority, to supervise research into Tertiary Entrance Score Calculations, with Secretariat services provided

by the ACT Schools Accrediting Agency.
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2 Determining Relative Academic Achievement

1987: this view of the project in relation to the data is discussed briefly in an Appendix to this
chapter.

Some General Background

The Tertiary Entrance (TE) score constructed in the Australian Capital Territory (ACT) is
an example of an index that can be used to help select students for admission to higher education.
The intention is that it reflect relative academic merit, as shown in academic performance at the
upper secondary school level.

The central issue we address is how such an index can be constructed from the range of more
specific “subject marks” or “course scores”. These are indices of relative academic achievement.
They can be produced by public examination, ability testing, any form of school-based assessment,
or by combining any of these or similar types of indices. Phrased thus, the report is more than
a narrow study of the relative merits of particular “mark scaling methods” for use in the ACT: a
general framework enables us to see problems like those of the ACT in better perspective.

Across Australia, statistical procedures assist in producing aggregate scores that are “fairer”
to all students and less amenable to artificial manipulation by choice of course or by other means.
Their use can be traced to educationalists who were managing systems that incorporated widely
administered public examinations and who recognized the possibility for such systems to be ma-
nipulated. Specifically, these procedures aim to ensure:

(i) that there should not be undue fluctuations in scores awarded to candidates in courses with
large candidatures changing little in either numbers or nature; and

(ii) that a student’s choice of subjects should not in itself lead to any advantage or disadvantage.

In this way, it was hoped to foster greater flexibility (“freedom of choice”) for students in their cur-
riculum construction. Further, an efficient centralized system of Tertiary Admission requires some
automated selection. In this way statistical procedures have become an administrative necessity.

A major aim of statistical procedures is to translate the educational goals
of consistency and equity into practice.

Principles and Assumptions for Producing Tertiary Entrance Scores in the ACT

The following statement of principles and assumptions is based on a paper and subsequent
discussion at a two-day seminar on aspects of Tertiary Entrance score construction held in Canberra
in July 1988. The statement does not have any official standing: it is given essentially to provide
some focus for our exposition. In particular, some like Masters & Beswick (1986) have queried A 1,
while the sex bias problem contravenes P 4 because of a failure of A 5. “Short names” for the
statements are given in parentheses.

Basic Assumptions

A 1. It is possible to measure relative general academic achievement on the basis of a student’s
work in Years 11 and 12 from their course scores. [TE scores are meaningful.]

A 2. Teachers can make valid and reliable judgments concerning the relative performance of
their students. They can accurately represent these judgments by scores in the courses
for which they are responsible. [School-based assessment is valid.]

Principles in Constructing TE Scores

P 1. The construction of a TE score should have a minimal effect on the curriculum choice of
students, nor should students’ curriculum choices per se affect their TE scores. [Indepen-
dence of TE scores and subject choices.]
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P 2. The system should preserve students’ relative achievements as depicted by the teacher-
determined scores. [Respect teachers’ comparative judgments.]

P 3. The prime responsibility for detailed assessment of any course should lie with the college
or school responsible for the conduct of that course. [No external exams.]

P 4. The TE scores of a group of students should not be influenced by anything other than
their relative academic achievements. [No bias.]

Assumptions about ASAT Scores

A 3. Australian Scholastic Aptitude Test (ASAT) scores measure a factor of general scholastic
aptitude. [What ASAT scores measure.]

A 4. General scholastic aptitude can be measured validly by a mix of questions from the areas
of humanities, social science, mathematics, and the sciences. [ASAT scores reflect a mix
of aptitudes.]

A 5. ASAT scores are sufficiently positively correlated with relative academic achievement to
justify rescaling course scores. This “common scale” validly compares student achievement
across all schools within the system. [A statistical procedure for TE scores can be based
on ASAT scores.]

A Logical Basis for Scaling

Our development is governed by an adherence to Principles P 1–4 and acceptance (with some
verification) of assumption A 1. On these bases, different starting points in Chapters 2 and 3
consistently lead to (A) and (B) below. The request “to determine . . . an educationally acceptable
basis for a single aggregate Tertiary Entrance score” is equivalent2 to developing a procedure
consistent with a set of educationally agreed principles, so granted such acceptability of Principles
P 1–4, (C) follows also.

This development is consistent with an otherwise unstated premiss, that
any valid scaling procedure should have a logical basis.

It is a premiss supported by Masters & Beswick (1986, §2.32):
“A weakness of scaling procedures in use in every system in Australia is that they are not
supervised by an explicit statistical model for score equating and aggregation.”

The strength of such an approach is that it enables us to answer by implication, if not also directly,
questions of the relative merits of different scaling procedures.

CONCLUSION 1.1. If a composite measure of relative general academic achievement is to
be constructed on the basis of several particular measures of achievement like exam.
marks, then

(A) it is statistically acceptable that it be an aggregate of scaled marks;

(B) the scaling should be determined internally by the set of marks in conjunction
with the method-of-moment estimation procedure;

(C) an aggregate of marks determined via (B) is also educationally acceptable.

2 “It is sometimes assumed in the educational field, if not others, that the adequacy of a system is

measured by the ready comprehensibility of its technical details . . . The Working Party has chosen the

approach that what should be readily understood are the principles on which the system is based . . . It

has proved impossible to devise a system that both discharges some worthwhile principles and also has

no technical aspects of greater complexity than can be explained to a general audience in a few words.”

(Tertiary Entrance in Queensland: A Review (1987), p.123).
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What is a Scaling Procedure?

A scaling procedure is an algorithm that changes one collection of sets of exam. marks or course
scores etc. into another collection of scores so as to preserve whatever orderings there are in the
original sets, with the goal of estimating students’ relative general achievements equitably. We
consider only procedures in which the changes are effected by linear transformations. These have
an appeal of simplicity as they are specified by determining what the means and standard deviations
of the sets of scaled scores should be. The simplest of the ASAT scaling procedures states that
these means and standard deviations for each set of scaled scores should coincide with those of the
ASAT scores of the same sets of students; these sets refer to scores in different courses or groups
of courses called moderation groups in the ACT. In the literature, justification for this procedure is
often given via ideas of common scales for different groups. This justification is quite distinct from
the motivation for having a scaling procedure in the first place, namely the “fair” construction of a
measure of relative general academic achievement. Addressing this problem directly shows that the
general setup of estimating general achievement reduces in a special case to this “common scale”
approach, but that otherwise the two approaches are distinct. As for any logical connection between
the motivation and the existing procedure, all that can be shown, in both theory and practice, is
that it is a markedly inefficient method of estimating parameters to fit a one-factor model to such
data as usually arise. In short, the existing procedure does a noticeably rough-and-ready job of
meeting the aim.

First approaches

Chapters 2 and 3 give some basic analyses, introduced by the simplest of examples of “bal-
anced” data sets for which there are only scale parameters to be determined (i.e., standard devi-
ations for scaled course scores); this topic is much neglected in the literature. By using a direct
representation for a typical data set, we show what any aggregate score constitutes, and use this to
determine what constitutes a “fair” aggregate in practice when students study a subset of courses
from a much larger pool of offered courses.

This “fair” aggregate essentially coincides with what is constructed by applying a Method-of-
Moment (M-o-M) estimation procedure to the model in Daley & Seneta (1986); they advocated its
use on the grounds that it involves making minimal assumptions about the data. The representation
in Chapter 2 entails no modelling assumptions about the data, so it provides even more reason for
using the model considered by Daley & Seneta together with M-o-M estimation.

Two bonuses come from this direct representation for a simplified data set. First, for a typical
such data set, there is essentially only one set of scaling parameters that satisfy the equations that
are easily set up, and second, the values of these parameters can be found by an iterative solution
technique. From a mathematical point of view, these are highly satisfactory observations because
hitherto the various so-called “iterative scaling procedures” in use in Australia have been known
to converge to a solution merely on empirical grounds — we now know that, with a simplified data
set, convergence necessarily occurs, and yields the essentially unique solution.

Rasch models are fashionable in educational measurement circles. The use of models akin
to these in considering how course scores might be used to reflect relative academic merit, leads
to formulating the same mathematical problem as is solved by the M-o-M estimation procedure.
Because the scaling criteria for a given set of course scores comes from Other Course scores, and
because the M-o-M parameter estimates have the critical property of unbiasedness amongst Other
Course score estimates, we call it the Optimal Other Course score Scaling Procedure, and denote
it OptOCSP.
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Data Analyses

Much of our technical discussion and analyses centres on a description of the data set, aimed
partly at checking the assumptions underlying the development in Chapters 2 and 3, and partly at
repairing a serious deficiency of Masters & Beswick (1986), called M&B below. M&B failed to give
any quantitative discussion of the multidimensional nature of course and ASAT scores, yet claimed
that this multidimensionality is the root cause of the ACT’s problems. They asserted without valid
evidence that the sex-bias problem is a statistical artefact, being a manifestation of this alleged
root cause.

For data of the type that arise with ASAT and ACT course scores, it is possible to describe
almost all of the systematic variability by three measures: a general achievement/ability factor, a
contrast factor between quantitative and verbal skills, and a contrast factor between ASAT and
school-based course scores (see Chapters 6 and 10). In Chapter 6 we look for possible global
dependency relations between these factors, for M&B alleged that such exist. We do not find
evidence to support the claim.

The description in terms of three measures implies that such data sets may be fitted by a
statistical model involving “true scores” that have a three-dimensional structure. In this model,
TE scores are identified with the relative general achievement factor, modulo a much smaller
perturbation produced by a fraction of the quantitative/verbal contrast factor. Use of this model,
coupled with some knowledge of the sizes of the factors involved, allows us to consider a range
of methods for estimating students’ relative general achievements via measures like the existing
Tertiary Entrance score (cf. also Daley & Seneta, 1986).

Data analyses in Chapter 8 show that OptOCSP is the scaling procedure with by far the
least imprecision: thus it is arguably the most faithful to the school-based measures. Theoretical
analyses in Daley (1988) point to the OptOCSP having model unbiased3 scaling parameters. These
two properties taken together lead us to deduce that an optimal scaling procedure respecting the
essence of the existing constraints and principles is given by OptOCSP.

On the grounds of both biasedness and precision, the existing ASAT Scaling Procedure
(ASATSP), first devised on an ad hoc basis in Queensland in the mid-70s and used in an es-
sentially similar fashion since, is demonstrably inferior to the OptOCSP. This is because scaling
parameters under ASATSP are no longer necessarily model unbiased, and both theoretically and
empirically the imprecision of the resulting TE scores is much larger.

The properties of OptOCSP that make it consistent with the Basic Principles underlying the
production of TE scores in the ACT are that

(i) it preserves the principle of independence of TE scores and subject choices;

(ii) it preserves teachers’ comparative judgments of achievements;

(iii) it places prime responsibility for production of TE scores with the colleges much more faithfully
than ASATSP; and

(iv) subject to the elimination of the sex bias problem existing between ASAT and school-based
assessments, it shows neither advantage nor disadvantage for any groups of students.

[The sex bias problem arises from a gender-linked discrepancy between ASAT and course scores
(Chapter 6). It is a phenomenon basically independent of the Scaling Procedure per se, and requires
independent action to rectify it (see Chapter 7).]

3 While not stated explicitly, so far we have essentially been describing how to judge the choice of

procedures for determining the standard deviations. Unbiasedness here refers to the so-called scale param-

eter. Later we shall consider the more serious bias problems that can be associated with procedures for

determining location parameters: the sex bias problem is of this latter type.
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The OptOCSP is also consistent with Assumptions A 3–4 concerning ASAT scores, except that
it is much less dependent on individual vagaries of ASAT scores, and its correlational properties are
much better (Chapter 10). The OptOCSP is more resistant to manipulation than the ASATSP, in
the sense that attempts to “play the system” so as to gain some relative advantage are accompanied
by either penalties for wantonly trying to gain such advantage without treating the activity seriously,
or else beneficial educational side-effects when students generally approach the whole range of their
learning activities even-handedly as is assumed by any scaling procedure.

The relative general achievements of students within any college can be determined as Years 11
and 12 progress whenever any set of pseudo-course scores is available. The resulting indicators can
be expected to change in time and when inter-college measures (presently, ASAT scores) are deter-
mined. The final within-college changes would be rather less than with predictions of comparable
indicators under the ASATSP. If such “within-college TE scores” are used, students may become
aware sooner of tertiary level courses likely to be open to them. On the other hand, making the
OptOCSP algorithm available to colleges means that there would be available a facility to observe
the effects on within-college TE scores of any manipulations of the basic course scores. Equally, it
is open to colleges to write their own programmes to perform internal scaling (and I am aware of
some institutions that do this, and not just at the Year 12 level).

Second Approaches

The major difficulty with the ACT and Queensland systems in terms of producing system-wide
TE scores concerns how to establish inter-school comparability of any aggregate scores. Producing
the within-college scores is not so difficult: between colleges is a much thornier problem, as the
Accrediting Agency’s records for 1978-88 bear testimony.

Since the argument of Chapters 2 and 3 points to fallacies associated with using bivariate
equating procedures with multivariate data, the existing use of ASAT or any other reference scale
score needs reappraisal. In Chapter 4 we start by finding an optimal mixture of ASAT sub-scale
and Writing Task scores for use as a reference scale. For 1986, the system-wide optimal mixture of
Q : V : W = 47 : 18 : 35 is consistent with the optimal mixtures formed within each college, and
also within sex within each college. It is most desirable that the analyses be replicated with at least
one more data set before any prescriptive determination of these weightings be made. Further,
such replication should be a routine feature of the annual Year 12 Study so that any medium term
shifts may be detected.

In principle, it is feasible to determine each year, when ASAT scores have become available
and before the TE scores are finally produced, whether any marked shift from a pre-determined
weighting of components of an ASAT Total score has occurred. However, I sense that the ACT
community, while quite happy to accept recommendations on technical matters from advisors with
a philosophical or dogmatic bent, may be less happy to accept them when empirically determined
from analyses of long runs of similar data sets, even when there is at best limited quantitative
understanding of what those analyses accomplish. We then consider how to relate a scale of one
reference measure to the “scale” of a set of within-college measures of general achievement. It looks
like a setting for a bivariate adjustment procedure, except that the ASAT and general achievement
measures have errors of quite different orders of magnitude. The ultimate solution (Chapters 4
and 11) involves treating the optimal mixture of ASAT scores as scores from a course of value
intermediate between that of a Minor and a Major course score.

RECOMMENDATION 1

(a) As from 1989, a single-aggregate TE score should be constructed from
course scores that have been scaled via the Optimal Other Course Score
Scaling Procedure.



1. Introduction and Summary 7

(b) Consideration should be given to making available to colleges, at certain
intermediate times during Years 11 and 12, access to a pseudo-OptOCSP
to enable pseudo within-college TE scores to be constructed, on the strict
understanding that any pseudo-scores so produced are interim indicators
and subject to moderate changes when finally determined.

(c) Work should be continued in conjunction with appropriate tertiary insti-
tutions on the informational content of a student’s course and ASAT scores
(and any other information that may be available) to determine whether
any supplementary indicators may be constructed from these data to indi-
cate whether that student’s TE score on its own is inadequate as a general
summary of the student’s achievements.

RECOMMENDATION 2

Analyses concerning Writing Task scores and their relation to ASAT subscale
scores in determining an “ASAT Total Score” should be replicated, routinely
monitored each year as part of the Year 12 Study, and some pre-determined
weighting of Q : V : W agreed on the basis of technical advice.

What we have not discussed so far is the use of reference scale scores to establish comparability
across colleges. This is the role of ASAT scores as used in the ACT, WA and Queensland (in much
of the discussion, “ASAT” and “reference scale” are synonymous). Two parameters are entailed,
affecting the location and scale of scores respectively. We assume that only the raw indices that
are currently combined into the ACT TE score are available. Then the existing procedure for
constructing TE scores is shoddy and should be replaced by one that is more akin to those in use
by most other Certification bodies in Australasia. Such a procedure is described in Chapter 11.

As a by-product of noting discrepancies between reference scale scores and school-based course
scores, we also find more evidence indicating that the gender-linked bias problem that has plagued
ACT TE scores since first issued in 1977, has not been solved. On the evidence it is unlikely to
be solved unless either more external examining is restored, or statistical adjustments are made
to the scores from the ASAT test. This is because the bias is a product of different educational
measurement methods. It emerges as a gender-linked discrepancy between these ASAT scores and
the school-based assessments that are proclaimed to be the norm for certification in the ACT. We
note in Chapter 7 some of the deficiencies of earlier reports in documenting the matter.

The majority view of the Review Committee that prepared MATHEF was an hypothesis
proposed in Masters and Beswick (1986) that

“the major source of current problems with Tertairy Entrance Scores in the Australian
Capital Territory is the multidimensionality of the scores from different courses which are
combined to form the Tertiary Entrance Score.” (MATHEF, §7.1)

MATHEF recommended certain changes that admitted the existence of a sex bias. Since I have
been asked to look at the possibility of maintaining the use of a single aggregate score, when the
operation of constructing such scores is supposedly a cause of the bias, it is relevant to check whether
the majority view remains tenable in the light of the further information that has emerged since
MATHEF was written in June 1986. Indeed, notwithstanding Recommendation 1 of MATHEF
that

“there should be no adjustment to Australian Scholastic Aptitude Test scores by calibra-
tion on the basis of students’ sex”,

the Supervisory Committee has asked specifically that I calculate

“the calibration which would be required were a statistical adjustment to be made to the
scaling criterion on the basis of sex.”



8 Determining Relative Academic Achievement

This is given in Table 12.5.
It follows from a wide-ranging review (Daley, 1989) that the Committee’s majority view just

quoted was not well founded. Indeed, the only evidence produced by M&B in support of their
hypothesis is fundamentally flawed, while calculations which give deliberate emphasis to any effects
of multidimensionality on the sex bias measure fail to produce the hypothesized consequence. The
conclusion of all this is that M&B’s hypothesis is vacuous. Direct use of educational measurement
data reinforces this conclusion.

In contrast, the more recent evidence shows that what the Review Committee regarded as a
second order effect in producing the bias, is in fact the dominant source: the bias arises primarily
from a gender link in the different skills and attributes reflected in Australian Scholastic Aptitude
Test multiple-choice based scores on the one hand and school-based assessments on the other.

Three obvious avenues for the ACT Schools Accrediting Agency to consider for use in removing
the sex bias are as follows:

(1) a statistical calibration of ASAT scores as discussed in MATHEF;

(2) increasing the weighting of the Writing Task in the so-called ASAT Total score;

(3) the use of some common external written assessment in the mathematics/science area, more
specifically norm referenced and curriculum oriented than the Writing Task, so as to secure a
measure that more closely reflects school-based assessment of achievement.

I give some discussion of the merits of each of these approaches and a fourth less obvious route to
enable the ACT Schools Accrediting Agency to reach its own conclusions on how the problem may
be dealt with effectively.

RECOMMENDATION 3

Appropriate action should be taken forthwith to eliminate gender-linked biases
in TE scores. (MATHEF, §1.1).
From a personal point of view, and also from an historical prespective, technical problems

relating to ACT course and TE scores have been treated with greatest competency and expediency
when the technical workers concerned have interacted in a forum of about half a dozen interested
people to assist in a “multidisciplinary” exercise. An appropriate model for technical or scientific
work is not the adversarial one involving “expert witnesses” but rather the cooperative evaluatory
one of “friends of the court”. A major reason for disagreement in 1985 between the ACT Schools
Accrediting Agency and its Technical Advisory Committee was the unwillingness of the Agency to
allow its Technical Committee any real participation in its decision making processes which tended
to be political even on technical matters. It is unreasonable to expect the Agency’s Secretariat to
maintain in its employ for a sufficiently long time individuals with all the skills required to make
apposite assessments of the range of technical matters that can arise.

Comments in the Appendix to this chapter give further support to the following.

RECOMMENDATION 4

A Technical Advisory Committee to the ACT Schools Accrediting Agency
should be revived, with responsibility for providing advice on technical matters
relating to the construction of TE and course scores. Its membership should
be longer term and not necessarily representative of interest groups. It should
be responsive to but not constrained by the Agency. Where the Agency is
unwilling to accept advice from the Committee on technical matters, it should
meet jointly with the Committee to reach decisions by consensus.
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Appendix to Chapter 1

The Nature of the Project

The formally assigned task, as the 1986–87 Supervisory Committee saw it in an enquiry to me
in December 1986, arose from the first part of Recommendation 8 of MATHEF, namely

“Further investigations should be undertaken of the method of [moment estimation pro-
cedure for] scaling course [scores] against other course [scores] within colleges and against
the Australian Scholastic Aptitude Test [scores] between colleges in order to determine
whether an improved single aggregate may provide a sufficient and unbiased account of
student performances.”

In response to that enquiry, a project covering at least three items was outlined:

(i) an examination of what Masters and Beswick called the multidimensional nature of the data
set consisting of course and ASAT scores, because in spite of this idea being fundamental to
their arguments, they did not investigate it;

(ii) the preparation and checking of computer programmes to process the data set using Method-
of-Moment estimators in an Other Course Score scaling procedure, along with output of infor-
mation indicating its precision; and

(iii) developing suitable procedures that should effectively eliminate the effects of the gross differ-
ences between ASAT and Tertiary Entrance scores because they affect the “fairness” of TE
scores no matter what scaling procedure4 is used.

The Supervisory Committee amended considerably this view of how to address Recommenda-
tion 8 by cutting the first and third items, and asking that this report

“specifically state the theoretical basis of the method of moments approach to scaling,
addressing the concerns expressed by the [Review] Committee which preparedMATHEF.”

The response to this request for a theoretical statement is almost certainly met more fully than an-
ticipated5 by Chapters 2–4 and Daley (1988). The concerns are met by implication: the approaches
through data representations in Chapter 2, modelling in Chapter 3 (and Daley & Seneta (1986)
before that), unbiasedness and precision considerations of Daley (1988) and Chapter 8, regression
analyses in Chapter 10, and the correlations listed in Tables 12 of the Year 12 Study, all point
to the superiority of Other Course Score scaling procedures using a single reference scale over the
present bivariate adjustment procedure, whether one or several reference scales are used. Much of
this depends on the structure of the data set and data analyses, which are needed to validate the
use of procedures predicated on the positivity assumptions of Chapter 2 or modelling assumptions
of Chapter 3, yet item (i) was specifically not requested.

Similarly, the Committee’s request that

“a clear statement of the algorithm to be used should be provided”

4 These gross differences affect the fairness of any Tertiary Admissions Index that is consistent with

all but A 5 of the Principles and Assumptions for constructing TE scores in the ACT. The effects need

not be visible without analysis, in which case they can be overlooked or [worse] ignored. For example, the

gender-linked bias effect has been noted ever since ACT TE scores were introduced.
5 The interim report was prepared before taking this request into consideration: essentially Chapter

2 and its approach comprise the specific response. Chapter 4 arises in part to indicate that there is a

range of apparently different mixtures of the ASAT sub-scale and Writing Task scores that do not differ

significantly, a facet not brought out in similar analyses by Morgan & McGaw (1988).
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cannot be met within the constraints it imposed. For a start, the gender-linked bias between ASAT
and course scores should be eliminated. Then, we should reduce further the effects of excessive
deviations from the supposedly sufficiently close relation between ASAT and course scores that
has in the past been assumed to be adequate to justify the existing scaling procedure. As a
compromise, I have exceeded the constraints of the Supervisory Committee and indulged in some
ad hoc computational work.

All that is being noted here is that,

within the circumscriptive terms of the present commission, specification of
an algorithm that would be both fair to all groups of students and ready for
implementation is not technically feasible.

In Chapters 4 and 11 there is shown how to construct an optimal reference scale score and an
algorithm for scaling via Other Course Scores using Method-of-Moment estimation is specified.
Calibration to correct for gender-linked biases has not been incorporated, nor are any details
included of how to cope with outlier scores.

The Committee also sought to specify certain summative information for the various scal-
ing procedures from which it is all too easy to make inappropriate comparisons between scaling
procedures, rather than asking more basic questions such as whether a scaling procedure is justi-
fiable, and if so is there an optimal way of reflecting that justification? Valid comparisons can be
made between scaling procedures, but mostly by criteria different from those that the Supervisory
Committee specified.

There are specific examples of both existing and rival TE scores, encoded to obscure individual
student identity without essential loss of information. These serve to illustrate how the range of TE
score behaviour can be summarized by more suitable statistical criteria. The various moderation
group parameters are also compared for the different scaling procedures.

In this report data based on the whole of the ACT population seeking a TE score are sometimes
given without identifying the colleges concerned: this has been done in an attempt to focus attention
on the content of the data without the distraction of knowing from what college the data come.

The work done at the time of submitting an interim report largely reflected the requests of
the Supervisory Committee indicated to me when I was provided with a data tape early in August
1987. It is since that time that the requests to “state the theoretical basis [and] the algorithm”
have been added, without any consultation as to the feasibility of describing a fair algorithm (as
noted, this last is incompatible with the selection of work sought and the properties of the data
set).



CHAPTER 2

Representations of Course Scores and

The Construction of Aggregates

“A weakness of scaling procedures in use in every system in Australia is that they are not
supervised by an explicit statistical model for score equating and aggregation.” (Masters
& Beswick, 1986, §2.32)

What an Aggregate Score Represents

Adding up “marks” is an operation with which most of us are familiar from contexts where
students have undergone assessment of more than one task, starting from the simplest examples of
spelling or arithmetic tests. This chapter starts by looking at a slightly more complex setup which
is “simple” relative even to a public examination system such as in New South Wales or Victoria.
We choose this approach because by describing the simple setup we shall demonstrate the core of
the so-called scaling problem that arises in aggregation, by which we mean the operation of adding
up marks that define rankings, when the aim of the operation is the construction of an overall,
composite ranking.

As a start suppose that all students who are being assessed follow the same curriculum and
have been assessed in exactly the same set of courses. In each course the set of scores (or, marks)
represents a ranking of the various students’ achievements as assessed. Adding up these marks over
all the courses and regarding the sum as defining a set of scores for a new ranking, is equivalent
to defining the new ranking to be that combination of the various constituent elements of the
component rankings in exactly whatever their representations are in the original scores.

Consider the very simplest such example, of just two sets of scores, in spelling and arithmetic
say. Suppose these scores are “marks out of 100” (for example, the number of correctly spelt words
out of 100 and the number of correct elementary sums out of 100); then the sum of the two scores
is a well-defined mix of rankings. Consider what happens if the tests are at about an appropriate
level of difficulty in arithmetic but too easy in spelling, so that there will be smaller differences in
marks for average and above-average spelling performance but larger differences for below average.
Then for most students, the aggregate will be influenced more by the spread of arithmetic scores
than spelling, the exception being the minority group with appreciably lower than average spelling
scores. It follows that for (say) the upper 50% of students, the aggregate score will reflect arithmetic
rankings much more than spelling rankings.

In this example, and in any context where all students follow the same curriculum, the simple
addition of marks can thus reflect different balances of attainments, even though on the surface it
is being defined “fairly” as the sum of (say) the same number of “marks out of 100”. It was just
this sort of unintended variation in the “definition” of an aggregate, as examination papers changed
from one year to another, that made educational administrators look for ways of preserving some
constancy over the years and thereby eliminate a major source of unintended variability that may
otherwise result (as e.g. “the English paper in my year was so easy we all got good marks”, little
realizing that in the “class averages” for the year, while the overall aggregate marks may have been
raised as a consequence, English marks would have played a lesser role in terms of determining any
ranking; this example should not be quoted out of its purely illustrative context).

11
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Return now to the general situation, where all students follow a common curriculum and have
scores in exactly the same set of courses j = 1, . . . , n. Assume that student i has a score Xij in
course j, and that the relative academic merit of students is defined to be the ranking determined
by the sums

Ti = Xi1 + · · ·+Xin . (2.1)

Given any such multivariate data set X ≡ {Xij : j = 1, . . . , n; i = 1, . . . , N} for which it is assumed
without loss of generality that

∑
iXij = 0 and N ≥ 2 (usually, N is rather larger than n), there

exists the principal component representation

Xi = LUi (2.2)

for the n-vectors Xi ≡ (Xi1 · · · Xin)
′ in terms of vectors Ui ≡ (Ui1 · · · Uin)

′ which have orthogonal
components in the sense that ∑

i

UijUik = δjkλj (2.3)

for constants {λj : j = 1, . . . , n} which are the eigenvalues of the covariance matrix

ΣX ≡ N−1
N∑

i=1

XiX
′
i (2.4)

and L is the matrix of associated eigenvectors (see e.g. Jolliffe (1986) or §8g.2 of Rao (1973)). In
terms of this representation it follows that the sums Ti are expressible as

Ti =
n∑

j=1

Xij =
n∑

j=1

n∑

k=1

ℓjkUik =
n∑

k=1

ℓ·kUik (2.5)

where for the column sums (= sum of elements in eigenvectors) we write

ℓ·k ≡
n∑

j=1

ℓjk = e′ℓk (2.6)

with e ≡ (1 · · · 1)′. For any data set X as above, the covariance matrix ΣX is positive definite, so
all its eigenvalues λj are positive and they can be labelled as in

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, (2.7)

(and with data sets it is almost invariably the case that these eigenvalues are all distinct, so we
shall assume they are, and thus that strict inequality holds). Finally, because L is orthogonal, (2.2)
implies that Ui = L′Xi.

For data sets like X it is usually the case that the covariance matrix ΣX has all its entries
positive, and fairly substantially so. Such positivity implies that

(a) λ1 > λ2, and
(b) all the components of the eigenvector ℓ1 ≡ (ℓj1) associated with λ1 are positive.

Typically, λ1 is the largest of the eigenvalues by an order of magnitude, while the positivity of
the covariances is such that, when the variances of {Xij} are about the same order for each j, the
components of ℓ1 are all about the same size, and thus are approximately equal to 1/

√
n . The

orthogonality of distinct eigenvectors then implies that, except for ℓ·1, the sums of components

ℓ·k ≈ 0 (k = 2, . . . , n). (2.8)
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The implications of these properties for the sums {Ti} are that in writing now

Ti = ℓ·1[Ui1 +
∑n

k=2(ℓ·k/ℓ·1)Uik], (2.9)

the variance λ1 of the set {Ui1} of first components is largest by an order of magnitude, while
the coefficients ℓ·k/ℓ·1 are approximately zero. In practical terms this then means that, while the
aggregate Ti is by definition composed here of a certain differential mix of the base scores Xij , it is
in reality dominated by the multiple ℓ·1Ui1 of the first principal component which has rather larger
variability than other components and a substantially larger multiplier. We summarize as follows.

CONCLUSION 2.1. A ranking determined by aggregates from data sets such as X is
basically a ranking determined by the first principal components {Ui1} in the principal
component representation.

EXAMPLE 2.1. For the purpose of demonstrating principal component analyses rather than dis-
playing a particular data set, we present matrices and eigenvectors for a set of data from an ACT
college in 1986. The data consist of ASAT sub-scale and Writing Task scores and (scaled) English
and Mathematics scores, for all students with those five scores (c. 90% of students). Three sets
of tables related to this data set are shown. The first is of the covariance matrix of the scores
{Xij} as issued, rescaled for convenience by division by 625 = 252, the second is of the matrix
of correlation coefficients, while the third is for the data rescaled so as to have all entries in the
eigenvector associated with the first principal component equal to each other. The sums ℓ·j

√
λj

are shown for the first two matrices; in the third case the sums are zero by orthogonality with the
first eigenvector. There are other examples in this report (e.g. Table 5.3).

EXAMPLE 2.2. Consider an n × n matrix whose diagonal elements are 1 and all other elements
equal a for some a in 0 < a < 1. Its eigenvalues are 1 + (n − 1)a, 1 − a, . . . , 1 − a. For example,
when a = 0.5 and n = 5 the eigenvalues are 3.0, 0.5, 0.5, 0.5, 0.5.

Two points are worth stressing here. First, because the scores of the set X represent relative
academic achievement on n scales with n ≥ 2, there is a whole family of “aggregate” measures of
relative achievement which it is possible to construct as the set of aggregates of positive multiples
of the elements Xij of X . In general, these relative achievement measures will change as the
multipliers change, emphasizing that there is an implicit arbitrariness about the n scales of the
scores in the first place. Second, Conclusion 2.1 is based on a mathematical representation which
necessarily exists so soon as the data set X has positive correlations.

REMARK 2.1. Conclusion 2.1 does not depend on any of the statistical modelling as-
sumptions to be discussed in Chapter 3.
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TABLE 2.1

Covariance Matrices of ASAT component, English, and

Mathematics scores, with Eigenvalues and Eigenvectors (“loadings”)

(a) Scores as used in 1986

ASAT Q 0.734
ASAT V 0.579 1.076
Writing Task 0.411 0.373 0.959
English 0.494 0.614 0.679 1.058
Mathematics 0.451 0.368 0.345 0.539 0.663

Eigenvalues λj 2.886 0.691 0.431 0.329 0.154

Eigenvectors∗ ×
√

λj :

ASAT Q 0.696 -0.213 0.184 -0.349 -0.221
ASAT V 0.809 -0.560 -0.300 0.057 0.125
Writing Task 0.736 0.532 -0.255 -0.239 0.110
English 0.913 0.220 0.002 0.381 -0.175
Mathematics 0.611 0.013 0.492 0.040 0.216
Sums 3.765 -0.008 0.123 -0.110 0.055

(b) Correlation Matrix

ASAT Q 1.000
ASAT V 0.606 1.000
Writing Task 0.419 0.408 1.000
English 0.504 0.601 0.645 1.000
Mathematics 0.647 0.285 0.300 0.497 1.000

Eigenvalues {λj} 2.981 0.829 0.640 0.374 0.176

Eigenvectors ×
√

λj :
ASAT Q 0.828 -0.347 -0.195 -0.328 -0.221
ASAT V 0.759 0.203 -0.584 0.071 0.192
Writing Task 0.714 0.484 0.396 -0.297 0.108
English 0.849 0.252 0.141 0.393 -0.205
Mathematics 0.700 -0.609 0.289 0.137 0.191
Sums 3.850 -0.017 0.147 -0.024 0.162

(c) Rescaled Scores∗∗

y1 0.835
y2 0.598 1.007
y3 0.457 0.377 1.045
y4 0.454 0.512 0.611 0.786
y5 0.572 0.424 0.429 0.553 0.939

Eigenvalues {λj} 2.917 0.696 0.529 0.312 0.158

Eigenvectors ×
√

λj :

y1 0.764 0.237 -0.067 -0.400 -0.178
y2 0.764 0.485 0.391 0.124 0.140
y3 0.764 -0.611 0.228 -0.141 0.128
y4 0.764 -0.169 0.013 0.332 -0.253
y5 0.764 0.058 -0.565 0.084 0.164

∗In the language of factor analysis, the quantities ℓjk
√

λj are called loadings because they reflect the

contributions or weights of the unit variance standardized factor scores Uij /
√

λj on the scores Xik.

∗∗ Write x1, . . . , x5 for scores underlying the matrix in (a). Rescale these to produce scores y1, . . . , y5 by

y1 = 1.067x1, y2 = 0.967x2, y3 = 1.044x3, y4 = 0.862x4, y5 = 1.190x5.
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When is an Aggregate a “Fair” Aggregate?

Conclusion 2.1 leads immediately to asking about the composition of this principal component.
We noted below (2.7) that Ui = L′Xi, from which it follows that

Ui1 = ℓ11Xi1 + · · ·+ ℓn1Xin ≈ (ℓ·1/n)Ti . (2.10)

Observe that the scores Zij ≡ Xij/ℓj1 have the representation

Zij = Ui1 +

n∑

k=2

(ℓjk/ℓj1)Uik , (2.11)

or in matrix notation, Zi = D1Xi where D1 is the diagonal matrix diag({1/ℓj1}) which is close
to the multiple

√
n I of the identity matrix. Suppose that it is prescribed that each course should

contribute equally to the ranking determined by the aggregate of scores. Then since the ranking
effectively reflects Ui1, it follows from the representations that the various sets of course scores
influence the ranking quantity “equally” when the scores that are used are like Zij in having the
same coefficient of Ui1, rather than variable coefficients as for the original scores Xij .

Let us indulge in some heuristic mathematics. Consider matrices like the covariance matri-
ces ΣX observed with data sets like X , specifically, positive definite with all entries positive and
bounded away from zero. The vectors Yi = DXi for any diagonal matrix D that is close to the
identity matrix I, yield a covariance matrix ΣY say that is close to ΣX , with eigenvalues and
eigenvectors close to those of ΣX . Denote its principal components by Vi (cf. (2.2)). Recalling
Zi at (2.11) prompts us to seek a diagonal matrix D0 such that when we form the aggregate Ti

defined as the sum e′Yi of the components of the scaled course score vector Yi, equivalently, a lin-
ear combination of the principal components Vi, only the first principal component appears in the
representation Ti = e′LVi as the sums of the eigenvectors associated with all other eigenvalues, i.e.,
their scalar products with e, vanish because e/

√
n is an eigenvector and eigenvectors are mutually

orthogonal. Thus, the approximations in the paragraph around (2.8) all become equalities.
Why should this matter at all? Is it not the case that one representation is about as good as

any other if the sums of coefficients are all close enough to 0? Suppose that the aggregate, instead
of being constituted as the sum of all scores, is constructed out of a subset of just m of the scores.
Then using the scores {Yij} we would have

Ti(m) = (m/
√
n)Vi1 +

n∑

k=2

[ ∑

j in subset

ℓjk

]
Vik . (2.12)

For example, if the scores were chosen as a student’s “best m scores”, the first term would remain
unchanged, while the others would contribute as a mix of different subsets. By way of contrast, if
the original scores Xij were used rather than Yij , then the first principal component would have
variable coefficients

∑
best m subset ℓj1, and students with scores in courses with smaller coefficients

ℓj1 in their “best” courses would be regressed towards the mean in comparison with other students.
For example, McGaw (1987) makes this point in the context of a one-factor model.

In other words, amongst all the linear combinations that can be constructed from scores X , we
identify the combination which is best in accord with the “curriculum parity” principle that “each
subject is counted so as to have the same influence in determining overall general achievement”,
as that combination that leads to a set of scores with representations in which the first principal
components of the scores have the same coefficient for each course score. This parity principle must
hold if P 1 is to hold. We state this more formally.
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CONCLUSION 2.2. When all students follow a common curriculum, the construction of
a “best m subset” aggregate from course scores X ≡ {Xij} most faithfully represents
the principle P 1 that students’ curriculum choices should not affect their TE scores
when student i’s scores Xi = (Xi1 · · · Xin)

′ are rescaled to scores Yi = (Yi1 · · · Yin)
′ via

relations
Yij = βjXij

for constants βj such that the matrix BΣXB with B = diag({βj}) and ΣX the covariance
matrix of X has e/

√
n ≡ (1/

√
n · · · 1/√n)′ for the eigenvector associated with its largest

eigenvalue.

For the sake of consistency with existing literature we have written B here for the diagonal
matrix denoted D0 earlier. Note that B is at best determined only up to a scalar constant: we
could for example require that det(B) = 1.

Conclusion 2.2 embraces two mathematical problems. First, given any positive definite matrix
ΣX all of whose entries are positive, does there necessarily exist a diagonal matrix B with positive
elements such that BΣXB has an eigenvector proportional to e? And if such a diagonal matrix
B exists, is it essentially unique (i.e., up to constant scalar multiplier)? Both problems have been
solved, and affirmatively: Sinkhorn (1964) proved a general result and noted an abstract of Marcus
and Newman (1961) that gives the special case we need. See the Appendix to this chapter.

The rather more practical problem of determining the vector β = (β1 · · · βn)′ for B = diag(β)
now arises, the direct approach being to find a set of equations which its components satisfy. Recall
the representation (cf. (2.2), (2.11) and Conclusion 2.1)

βjXij = Yij = (1/
√
n)Vi1 +

∑n
k=2ℓjkVik . (2.13)

Because each vector ℓk = (ℓ1k · · · ℓnk)
′ is orthogonal to the vector e, summing on j in the right-

hand side of (2.13) leads to
Ti/n = (1/

√
n)Vi1 ≡ ȳi , (2.14)

and thus, using
∑

iXij = 0 =
∑

i Yij for j = 1, . . . , n,

1

N

N∑

i=1

Yij ȳi = βj cov(Xij , ȳi) =
1

N

N∑

i=1

Vi1ȳi = var(ȳi) (j = 1, . . . , n). (2.15)

These equations can be rewritten as

βj =
var(ȳi)

cov(Xij , ȳi)
(j = 1, . . . , n), (2.16)

but they are not explicit expressions for β because ȳi also depends on β. Intuitively, we would
expect x̄i ≡ (X ′

ie)/n to be a reasonable first approximation to ȳi, and this is indeed the case. In an
appendix to this chapter we show that equations (2.16) have exactly one solution that is consistent
with Conclusion 2.2, and specify an algorithm involving an iterative process that converges and
determines the solution. In fact, this iterative technique coincides with Sinkhorn’s existence proof
for B.

CONCLUSION 2.3. The scaling constants βj of Conclusion 2.2 are determined uniquely
apart from a multiplicative constant, and there is a convergent iterative procedure to
determine them.
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What do Scores Represent? Another Reason for using Aggregates

We started our discussion without asking an even more basic question as to what a score Xij

represents. Typically, it will be constructed from a collection of other scores (marks on separate
questions in a test paper, or aggregation of marks from separate papers, etc.): how can we interpret
such scores? The time when I was a pure novice in the area of “the statistics of examination marks”
coincided by chance with my preparation of the 1983 Belz lecture to the Victorian Branch of the
Statistical Society of Australia, having chosen the topic of ranking with special reference to the
pecking order problem. It was an opportunity to contemplate precisely the question just given, and
there came the suggestion of regarding marks Xi′j and Xi′′j of individuals i′ and i′′ in course j as
having the following local interpretation. Suppose all the scores were redetermined from scratch
(e.g., different teachers, different class apart from the two students i′ and i′′ say); then interpret
Xij ’s as the indicator

Pr{student i′ ranked higher than i′′}
Pr{student i′ ranked lower than i′′} ≈ exp

(Xi′j −Xi′′j

τj

)
(2.17)

for some scale factor τj that here represents a measure of the precision with which the measures X·j

enable us able to determine the relative odds as just shown. I little realized that this is similar to
what follows from the Rasch model for item scores in multiple choice tests. This is not surprising:
scores Xij can be used to reflect a ranking of individuals, whether relative to each other or relative
to some hypothetical standard, and all that is being given is a parametric model to describe this
ranking.

We now have the mathematical problem of providing a framework for the combination of the
scores into a representation of a composite ranking. At first sight this appears (and is) more difficult
in the case of the relative odds representation just given than in the case of the linear factor model
of Chapter 3. An answer to the problem should allow for prescriptive educational definitions as to
“how much weight is to be given to each course”, such decisions being constructive decisions based
on educational considerations. In fact, in the case that all courses are weighted equally, we can be
led to the same mathematical problem, as we now show. For this purpose, replace i′ by i and i′′ by
some “standard” individual i0 with score ξj in course j. Now define a “conglomerate relative odds
function” for individual j as the product6 of the component relative odds, and rank individuals
according to this conglomerate function. Taking logarithms in no way affects this ranking, i.e., it
is the same as using

log(conglomerate odds for i) =
∑

j

Xij − ξj
τj

, (2.18)

for student i, summation taking place over appropriate subsets of courses j. But this just states
that the ranking is now being determined by an aggregate score.

CONCLUSION 2.4. Constructing a general achievement index from independence assump-
tions and a quasi-Rasch model that uses course scores as parameters leads to the same
starting point as the beginning of Chapter 2.

Brief Review and Preview

The discussion leading to Conclusion 2.1 makes explicit the following: the fact that any aggre-
gate is essentially an estimator of Vi1 with the type of data set X as usually arises, is a consequence

6 When probabilities of outcomes in different courses are independent, this product of odds ratios can

be interpreted as the ratio Pr{student i ranked higher than i0 in all courses}/Pr{student i ranked lower

than i0 in all courses}.



18 Determining Relative Academic Achievement

of the nature of the data set and not a result of an assumption being built into a model used to
assist us in deciding how Vi1 should be estimated. The later discussion leading to Conclusion 2.2
is prompted in part by an attempt in Appendices 1 and 2 of Tertiary Entrance in Queensland:
A Review (1987) “to analyse the problem of how best to scale school-based assessments for the
purpose of calculating [a relative general achievement measure]”. This discussion has had some
pleasing consequences: it has provided added justification for using the Method-of-Moment esti-
mation procedure, and it has been related to work showing the convergence of “iterative scaling”
for such an estimation procedure.

We turn in Chapter 3 to linking modelling approaches to the analysis of this chapter. These
approaches are needed because, as any reader familiar with student curriculum patterns at the
upper secondary level may be aware, the real situation is certainly more complex than the simplified
curriculum model considered so far: it is usually the case that students can and do choose a subset
of courses from the total range of courses offered.

A further problem, peculiar to systems such as Queensland or the Australian Capital Territory
relying (almost) totally on school-based assessment, is how such scores as {Vi1} produced within a
school can be used to yield aggregates that correspond to an equitable ranking across all schools.
This is considered in Chapter 4.

Mathematical Appendix to Chapter 2

Determination of the Scale Parameters: So-called Iterative Scaling Procedures

As a mathematical interlude, we sketch here some of the detail concerning the vector β of scaling
parameters {βj} in Conclusions 2.2 and 2.3. In popular accounts of “scaling procedures”, what
we describe is one particular “iterative scaling procedure”, which is a misleading name because
in reality it is only the equation-solving technique that is iterative; the scaling procedure is an
“other course score” procedure. For the sake of being more self-contained, we recall some of the
assumptions and notation from the main body of the chapter.

Suppose given a data set X ≡ {Xi : i = 1, . . . , N} of n-vectors of course scores for which the
covariance matrix ΣX has all entries positive (cf. (2.1)). The argument before Conclusion 2.2 leads
to seeking a diagonal matrix B = diag(β) such that the covariance matrix Σ of Y ≡ {Yi} ≡ {BXi}
is expressible as

Σ = LΛL′ (2A.1)

in which Λ = diag({λ1, . . . , λn}) is the diagonal matrix of eigenvalues ordered downwards from the
largest λ1 as at (2.7), and L is the orthogonal matrix of eigenvectors {ℓj} of which the first is

ℓ1 = e/
√
n where e = (1 · · · 1)′ ; (2A.2)

uniqueness can be determined by requiring either

det(B) = 1 or β1 = 1. (2A.3)

What follows is based on §2.6 of Seneta (1981) and Sinkhorn (1964) where more general details can
be found.

Sinkhorn’s Theorem 1 states that to a given strictly positive n×n matrix A there corresponds
exactly one doubly stochastic matrix A1 which can be expressed in the form A1 = RAC for
diagonal matrices R and C with positive diagonals, with R and C themselves being unique up to
a scalar factor (these diagonal matrices multiply Rows and Columns of A respectively). Express
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the doubly stochastic property of A1 in the form A1e = e and e′A1 = e′ , i.e., e is both a left- and
right-eigenvector for A1. In our case we have symmetric A, so

R−1A1C
−1 = A = A′ = C−1A′

1R
−1, (2A.4)

A′
1 = C ′A′R′ = CAR = CR−1A1C

−1R. (2A.5)

But both A′
1 and A1 are doubly stochastic, as also is IA1I, so by the uniqueness part of Sinkhorn’s

theorem, the diagonal matrices CR−1 and C−1R are scalar multiples of I, whence C = cR for
some scalar c which we may and shall choose to be 1. Thus, we have the required form CAC for
symmetric A.

Proving the existence part of Sinkhorn’s theorem in the case of a symmetric n × n matrix
A = (ajk) proceeds via a sequence of vectors {β(r) : r = 0, 1, . . .} defined recursively by β(0) = e
and

β
(r+1)
j =

1
∑n

k=1 ajkβ
(r)
k

. (2A.6)

From Seneta’s Lemma 2.5 we have for r = 1, 2, . . .

min
j

β
(2r)
j

β
(2r−2)
j

≤ min
j

β
(2r−1)
j

β
(2r+1)
j

≤ min
j

β
(2r+2)
j

β
(2r)
j

≤ min
j

β
(2r+1)
j

β
(2r+3)
j

. (2A.7)

The matrices A(r) ≡ β(r)Aβ(r−1) are specified element-wise as

(
β
(r)
j ajkβ

(r−1)
k

)
(2A.8)

so using the definition at (2A.6) of β(r) each of its row sums equals 1, i.e., A(r) is row stochastic.
Monotonicity and stochasticity show that a limit matrix and limit vector limr→∞ β(r) exist also,
and by inspection, the latter is β as required for B = diag(β).

Now apply these results to the matrix A = ΣX with

β(0) = e, X
(r)
i = B(r)Xi , ajk = cov(Xij , Xik), (2A.9)

so that

1

β
(r+1)
j

=
n∑

k=1

ajkβ
(r)
k =

n∑

k=1

cov(Xij , Xik)β
(r)
k =

n∑

k=1

cov(Xij , X
(r)
ik )

= n cov(Xij , x̄
(r)
ik ) (2A.10)

where x̄
(r)
i is the mean of the scores Xij using the rth approximation to the scaling vector β. Each

mean converges to ȳi, and so we recover the equations (2.16) up to the multiplicative constant
var(ȳi).



CHAPTER 3

Modelling Course Scores

“[The model of Daley and Seneta] makes explicit the intention of the entire activity: to
use scores on different courses to estimate a value vi on a single underlying variable for
each student i.” (Masters & Beswick, 1986, §2.46)

True Score Modelling

As already noted concerning the idealized data set X of Chapter 2, it has long been a common
observation that students who achieve higher scores in any one course tend to do so in others, and it
matters not whether achievement is measured via school-based assessments or public examinations.
In data analytic terms, sets of course scores in most subjects tend to be positively correlated. For
over two or more decades this has prompted many Australian workers7 to describe course scores
by a one-factor model. This postulates that the raw scores Xij in any given course j can be
transformed into scores Yij which preserve the rank ordering and can be expressed as

Yij = vi + eij (3.1)

for some common factor vi that may be described as “relative general achievement” and error terms
eij that are uncorrelated with both {vi} and error terms for other courses, and have zero mean
and standard deviation σ2

j . These error terms may comprise both model-fit error and measurement
error.

The inclusion of an “error” term is a feature of the “true score” model seen most frequently
in the literature in connection with the scores obtained in standardized testing (e.g. Chapter 2 of
Lord & Novick, 1968). This model for examination marks or mental test scores postulates that, if
students i = 1, . . . , n are subjected to (hypothetical) repeated determinations of their scores Xij

in course j by replication of the “run” (i.e., the whole procedure of determining those scores), the
resulting set of scores may be represented as

(Xij in run r ≡ (observed score for i in course j in run r)

= (true score for i in course j) + (error in run r), (3.2)

where the error terms are random variables independent both between runs and of the true score,
and have mean zero and variance s2j . In practice, we have observations from a single run. What
the model does is to provide a useful interpretation for {Xij} which, when put in the setting of an
aggregate score like Ti at (2.1) or the sum at (2.18), yields respectively

Ti =
n∑

j=1

(true score for i in course j) +
n∑

j=1

(error in Xij) , (3.3)

∑
(Xij − ξj)/τj =

∑

j in Si

(true score for i in course j)/τj + (const.) + (error) (3.4)

7 For example, Aitkin, 1968; Cook & Cooney, 1976; McGaw, 1977; Daley & Seneta, 1986. There is a

short bibliography of work outside Australia in the last reference. Note also Manly (1988).
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where Si denotes the subset of courses in which i has scores. There is one obvious difference between
(3.3) and (3.4) in the inclusion of scaling factors τj in the latter. This is of no consequence because
the argument of Chapter 2 and the true score model apply equally to replacing the “true score”
terms in (3.3) by any transformed scores such as Yij . Indeed, the argument of Chapter 2 points
precisely to the use of such a modified form of (2.1) or (3.3).

One-factor Models and Parameter Estimation

The analyses of the principal component approach of Chapter 2 can now be linked with true
score models in a variety of ways. The simplest is to identify the true scores appearing in (3.4), or
in (3.3) after scaling, with the common factor vi of (3.1) and Vi1/

√
n of (2.13), so that the error

term eij of (3.1) is identified with e′ij :

e′ij =
n∑

k=2

ℓjkVik . (3.5)

Then

var(e′ij) = σ2
j =

n∑

k=2

ℓ2jkλk , (3.6a)

cov(e′ir, e
′
is) =

n∑

k=2

ℓrkℓskλk (r 6= s), (3.6b)

whereas the model at (3.1) assumes that cov(eir, eis) = 0 (r 6= s). From (3.1) we have

var
(∑n

j=1 eij
)
=

n∑

j=1

var(eij) =
n∑

j=1

σ2
j , (3.7)

while from (3.5) and (3.6) the corresponding variance would be zero because the sum over j =
1, . . . , n of the right-hand side of (3.5) is zero identically in i. The source of the inconsistency
between the principal component representation and the model (3.1) lies in the inclusion in Vi1

√
n

of part of what is regarded as error in (3.1).
Using the model (3.1) to describe the scaled scores, and confining attention to linear transfor-

mations
Yij = αj + βjXij , (3.8)

how should the parameters {(αj , βj)} and {vi} be estimated? There are three approaches detailed
specifically in Daley & Seneta (1986), and an allusion to a preferred, fourth method. What should
be borne in mind is that the aim of the exercise is to produce an estimator for {vi}, and that
methods that may be easy or optimal for the rescaling parameters {(αj , βj)} may not necessarily
be optimal for {vi}.

A simple approach to the problem is to try and estimate {vi} independently of the course
scores {Xij}. This is what is done in Western Australia for example where raw scores from the
Australian Scholastic Aptitude Test (ASAT) are taken as estimators of {vi}. In the context of
producing an aggregate, it is an inefficient procedure, and unnecessarily introduces observable
imprecision that is extraneous to the use of the achievement scores {Xij} to furnish a measure of
general achievement. In fairly simple terms, when a student has (say) five course scores and an
ASAT score, this approach takes the latter as defining vi for scaling purposes with either no error
or constant error variance, while the former are taken as the scores that matter when determining
vi for implementation. Typically, five scores contain more information than one, so that scaling
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parameters when determined from ASAT scores alone incorporate much more variability than is
necessary. Worse again, there is distortion between the scale used for different averages and the
scales that the various standard deviations represent (and these last use mutually inconsistent scales
as well!).

Method-of-Moment Estimation

The standard statistical approaches of fitting by Least Squares and Maximum Likelihood were
outlined in Daley & Seneta (1986), and were rejected on the grounds of representing projections
of the scores on the nominal scale {Vi1}, and requiring assumptions which were so strong as to
represent an undue imposition of conformity on the data. (The problem of projections is a more
acute version of the “unequal correlation” property underlying the observation in McGaw (1987)
noted below (2.12).)

“ . . . The pragmatic approach to estimating the quantities (aj , bj) is to adopt a moment
method approach . . . From a statistical viewpoint, this moment method approach appears
to be the one with the most cogent and assumption-free arguments underlying it.” (Daley
& Seneta, 1986, p.152)

The parametric specification used at (3.8) differs slightly from that of the original exposition, but
is consistent with subsequent discussions.

Starting from equations (3.1) and (3.8), and using a subscript on formal moment operators
to denote that the moment is confined to the subset of scores from the course j or individual i
concerned, it follows from vi = E(Yij) = αj + βjE(Xij) that

avej(vi) = αj + βj avej
(
E(Xij)

)
, (3.9)

varj(vi) = βj covj
(
vi, E(Xij)

)
, (3.10)

vi = avei
(
αj + βjE(Xij)

)
, (3.11)

varj(vi) = β2
j varj

(
E(Xij)

)
+ σ2

j . (3.12)

The Method-of-Moment estimation procedure consists simply of replacing the expectations
E(Xij) in equations (3.9)–(3.11) by the scores Xij themselves, and solving the resulting equations.
Inspection of (3.11) shows that it is the same as estimating vi by the average scaled score Yij . This
means that we would identify such vi with the average score ȳi of Chapter 2 if all students were
following precisely the same curriculum; then also, equation (3.10) is the same as equation (2.16).

CONCLUSION 3.1. The Method-of-Moment estimation procedure for finding scale pa-
rameters yields the same estimators as under a principal component analysis when
the data set is a balanced set as in Chapter 2.

A general weakness of previous published accounts of scaling procedures has been the absence
of a connected discussion of both the location and scale parameters that should be used. After all,
if different groups have their scores spread according to the means of certain “scaling criterion”
scores, then in spreading scores within a group via their standard deviation care should be taken
to ensure that the scales used for the two spreading operations are consistent. (3.9)–(3.11) do not
have this weakness.

Two-factor Models

So far we have used a one-factor model. It has been a common observation (e.g. Cooney, 1976;
pp.142–146 of Beswick, Schofield, Meek and Masters, 1985) that course scores require for their
representation at least a two-factor model. In terms of the principal component representation in
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the setup of Chapter 2, this means that both {Vi1} and {Vi2} can be interpreted meaningfully in
terms of relative achievement. What is also commonly found in such studies is that a two-factor
model generally suffices to describe common features of the data set: the rest can be left to a mix
of “error” and so-called “unique” factors, with rather less required for the latter granted the nature
of identifiable measurement error8 when the scores concerned come from external exams.

We therefore consider what happens to our analysis when, instead of the relation

(true score for i in course j) = vi (3.13)

implied by (3.1) and (3.2), we have

(true score for i in course j) = vi + γjvi2 (3.14)

for some unknown constants {γj} and second factors {vi2} that are uncorrelated with the first
factors {vi} and error terms. This matter was studied in Daley (1988) where it was assumed that
students tend to choose more courses amongst those where they are relatively stronger. In terms
of (3.13) this means choosing courses j for which vi2 has the same sign as γj , so that students’
aggregate scores, formed from the course scores in whatever courses they happen to take, are
represented by

(student i’s aggregate score) =
∑

j in Si

(vi + γjvi2 + error)

= (no. of courses)vi + Ci|vi2|+ error (3.15)

where the coefficients Ci are much smaller than the coefficient of vi and mostly positive, and the
variance var(vi) of {vi} over the population is much larger than that of {vi2}, and larger still than
var

(
[Ci/(no. of courses)]|vi2|

)
.

Next, ask what happens in numerically fitting a one-factor model

(true score for i in course j) = v
(1)
i + e

(1)
ij (3.16)

to a data set that in fact has a two-factor structure as at (3.14). Then

(estimate of v
(1)
i ) = (no. of courses)vi + Ci|vi2|. (3.17)

Use characteristic values for the relative variability of {vi} and {vi2}, and use over-estimates for
{γj}. Daley (1988) showed that these two modifications to the one-factor model with all students
taking all courses gives estimates of scale factors βj that may be biased up to 1%, which is far
smaller than the 5% or more of a two-moment scaling procedure and 10% or so from a least squares
procedure.

CONCLUSION 3.2. For practical purposes, fitting a data set having a two-factor structure
as at (3.14) by the Method-of-Moment estimation procedure valid for scaling a one-
factor model results in negligible differences in the aggregate scores produced from
the original and scaled data sets.

8 Daley (1985b) analysed data from NSW HSC Examination Statistics and deduced estimates of the

errors between examination marks and school-based estimates of those marks. Some of these analyses were

updated in Daley & Eyland (1987) when estimates were replaced by school-based assessments.
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We can also gauge the practical effects of this model mis-specification from the use on the same
set of NSW HSC data of two Other Course Score scaling procedures, the University of Sydney
procedure for NSW UCAC, and Method-of-Moment procedure by the Canberra CAE for itself
(Daley, 1987b). The differences in the estimates of {βj} between these two procedures may be up
to 5% to 7% (Daley, 1987a and 1988a). The rankings given to students under one procedure rather
than the other differ by rather less than 1 percentile point around the median. Such a discrepancy
in classification of students, equivalent to acceptance or rejection of an application for admission to
a course, is far smaller than what has hitherto been unknown and accepted in ignorance (cf. also
Table 12.4(b)).

While Masters and Beswick recognized the need for any scaling or aggregation procedure to
be supervised by a statistical model, and saw that a one-factor model provides a context where
the aim of aggregation is plainly given as the estimation of a parameter in such a model, they still
failed9 to recognize in their report that since

“the main purpose of the model [in this paper] . . . is to provide a framework within which
different moderation procedures can be compared as statistical procedures.” (Daley &
Seneta, 1986, p.144),

the model of necessity “supervises” each of the procedures. What the theory of Chapters 2 and
3 does is to use the principles endorsed by Masters and Beswick to demonstrate the nature of an
aggregate score and to show that, within the types of data set that arise, the modelling of Daley &
Seneta (1986) goes much further than stating the object of the exercise, justified by Chapter 2: its
extension in Daley (1988) establishes that the unsubstantiated fears raised by Masters and Beswick
under an umbrella of multidimensionality are in fact groundless. In Chapters 6 and 7, we shall see
that their partial persuasion of the 1986 Review Committee that wroteMaking Admission to Higher
Education Fairer (= MATHEF) that the sex bias problem giving rise to the Committee’s existence
was a consequence of multidimensionality, is groundless also: the evidence points to its being a
consequence of different educational measurement properties of different groups of individuals on
different assessments.

9 Also, in their §2.49 Masters & Beswick misquote from Daley & Seneta (1986), by attributing comments

about least squares estimators as applying to Method-of-Moments estimators.



CHAPTER 4

Constructing and Using an External Reference Scale

In the simple setup of Chapter 2 all students are assessed in common, and the discussion
there applies as well to the internal assessments of any particular school as to the results of a
common set of (external) examinations taken over a much larger region. This chapter discusses
possible modifications to this simpler setup needed to cope with systems like those of the ACT and
Queensland for which the simpler setup applies only to each school that is a member of the much
larger system. These two educational systems use both school-based course scores and scores from
the Australian Scholastic Aptitude Test (ASAT) to construct a Tertiary Admission Index (TAI)
for each student seeking such. The systems claim that these scores reflect school-based measures of
general relative achievement fairly for all students. The arguments we give reflect partly on the way
the systems presently operate, and partly on general principles that indicate what methodology
may best lay claim to the statement that the TAI so constructed is a fair system-wide measure of
general relative achievement.

Constructing an Optimum Reference Scale

Suppose that estimates {Vi1} of measures of relative general achievement have been produced
within schools of such a system, and that all students have a set of scores {(AiQ AiV AiW )}
constructed system-wide. How best can we use these scores to place the various sets of scores {Vi1}
on a system-wide scale? There are two parts to this question:

(a) What combination of the scores {(AiQ AiV AiW )} best resembles {Vi1}?
(b) How should such a combination be used?

We note here a couple of facts for the record. The standard educational approach to the first part
of the problem, as for example in NSW or WA in the context where the scores {Vi1} are school-
based scores in a particular subject or course and whole families of school-based scores like {Vi1}
exist, one family to each course, has been to presume that a common public examination on a
syllabus that is sufficiently close to the school-based syllabus will produce scores that are adequate
for the purpose. The measure of adequacy commonly reported (but, it is not the most appropriate
measure to report) is the correlation coefficient between school- and exam.-based scores. This
approach was adopted in Queensland in the sense that there, total ASAT scores {Ai} are used,
and the ACT initially did likewise. Then c. 1984 the ACT sought to control the composition of
{Ai} psychometrically, replacing these raw scores by a 50 : 50 mixture of Quantitative and Verbal
sub-scale scores {(AiQ AiV )}. Since the sub-scale scores are constructed by statistical devices, it
seems only proper and consistent to use similar devices, at least initially, to answer part (a) of the
present problem concerning the scores {(AiQ AiV AiW )} in relation to thirteen sets of scores {Vi1},
one set per college. As a check, the same question can be asked separately of the groups of female
and male students within each of the eight mixed-sex colleges.

Desiderata of any reference scale, to be consistent with the principles P 2–4 and the analysis of
Chapter 2, should include maximum agreement with the scales {Vi1} produced within each school.
In the present context this means that the correlation between {Vi1} and whatever is used as {Ai}
should be maximized; bias questions are deferred to Chapter 7. When a system-wide set of scores
like {(AiQ AiV AiW )} is available for the construction of such {Ai}, we ask: within each school,
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(i) What is the best “mixture” of these three components when used to predict scores {Vi1} (and
we interpret “mixture” as a linear combination)?

(ii) What is the best global mixture closest to each of the mixtures determined in (i)?

(iii) Does the global mixture produce significantly worse predictions than any of the separate op-
timal mixtures of (i)?

(iv) When used as a predictor of {Vi1}, does the global mixture have approximately constant
unexplained variability (i.e., “noise”) across different schools?

In preparing the next four tables, we have followed existing ACT practice in scaling course
scores except to replace the ASAT scaling procedure by the Other Course Score procedure of
Chapter 3 that agrees with the approach of Chapter 2 in that uniform setup. This yields sets
{vi} ≡ {Vi1}, as well as quasi-TE scores which we denote {TMi} (M for Method-of-Moments). We
have then done various regression analyses to “predict” either {vi} or {TMi} by linear functions of
the triplets {(AiQ AiV AiW )}, and used standard statistical measures to compare these predictors.
For each set of scores within a given college, say {vi}, it is feasible to compare different predictors
by their correlations, but it is not logical to make comparisons across colleges via correlations
because the latter can change considerably with the spread of {vi}. The F ratios in the column
QVW :Opt. compares the simple average of the thirteen college-wise optimum mixtures with the
optimum mixture within each college both as a whole and, for each mixed-sex college, for each
gender group.

Table 4.1 shows the optimum percentage mix of the component scores (either two or three)
used to predict {vi} and {TMi}, within each college for all students, and when the college is
mixed-sex, for males and females separately. In Table 4.2, each F ratio entry in the column
QVW :Opt. compares the improved fit that holds when, for the school or gender group within the
school concerned, the best linear combination of the three scores is used in place of the average
of the college-wise optimal mixtures. Of the 30 regressions shown, 2 have F ratios exceeding the
5% significance level (though only just: 4.7% and 4.2%), so there is no evidence in these analyses
indicating that the overall mixture is other than common to all sets {Vi1} and their gender-based
subsets. Thus, in the space spanned by {(AiQ AiV AiW )}, no set of scores {Vi1} is concentrated in
a direction significantly different from that of the predictor 0.472AiQ + 0.181AiV + 0.347AiW , i.e.,
there are no significant differences between colleges in the psychometric composition of aggregates
over the college as a whole, whether single- or mixed-sex or within the gender-based groupings in
mixed-sex colleges, except possibly in directions orthogonal to the space {(AiQ AiV AiW )}.

Table 4.2 lists certain results about the different regression analyses. The F ratios comparing
predictors on two rather than three components shows that of the three scores concerned, the least
useful is the multiple choice Verbal sub-scale score. Even the sub-optimal mixture used in 1986,
denoted AST in the Table, was a distinct improvement10 on the optimal Q–V mixture.

CONCLUSION 4.1. The Writing Task used in 1986 was a successful innovation in the
sense of enabling the construction of a better reference scale.

The detail of the various mixtures given in Table 4.1 indicates the scope for variation about an
optimum predictor that may be observed in practice. What may seem surprising is that, in moving
from the three-component predictor to the two-component predictor based on {(AiQ AiW )}, the
explanatory power of the Verbal sub-scale score {AiV } is taken up rather more by {AiQ} than by
Writing Task scores {AiW }. This result is consistent with the existence of an observable mode-of-
assessment effect on the determination of “Verbal” ability, as conveyed by an essay-writing exercise
like the Writing Task as opposed to the multiple-choice methods used to find AiV .

10 The standard cautionary remark about a conclusion being based on just one ASAT paper and Writing

Task should be added here.
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TABLE 4.1

Mixture ratios of optimal predictors of vi and TMi.

Run # Regressing {vi} Regressing {TMi}
Q : V : W Q : W Q : V Q : V : W

(a) All Students

620 62.5 : 17.9 : 19.6 77.6 : 22.4 77.4 : 22.6 60.9 : 19.4 : 19.7
621 51.4 : 15.5 : 33.2 61.7 : 38.3 67.8 : 32.2 51.2 : 14.2 : 34.6
622 57.5 : 19.4 : 23.1 72.6 : 27.4 71.2 : 28.8 60.1 : 18.1 : 21.8
623 51.0 : 8.4 : 40.6 56.8 : 43.2 70.0 : 30.0 50.7 : 10.7 : 38.5
624 20.6 : 42.6 : 36.8 52.3 : 47.7 35.6 : 64.4 23.7 : 41.0 : 35.3
625 46.7 : 4.6 : 48.6 49.6 : 50.4 71.9 : 28.1 43.4 : 7.7 : 48.8
626 41.3 : 16.9 : 41.8 52.2 : 47.8 58.5 : 41.5 42.1 : 16.7 : 41.1
627 57.7 : 16.1 : 26.2 71.1 : 28.9 76.2 : 23.8 59.9 : 15.7 : 24.4
628 36.4 : 20.6 : 43.0 53.3 : 46.7 72.0 : 28.0 36.7 : 20.4 : 42.9
629 54.0 : 10.1 : 35.9 61.1 : 38.9 66.8 : 33.2 55.6 : 10.3 : 34.2
630 50.7 : 8.2 : 41.1 55.8 : 44.2 57.3 : 42.7 51.7 : 7.5 : 40.8
631 44.3 : 28.7 : 27.0 64.5 : 35.5 54.2 : 45.8 44.3 : 27.6 : 28.1
632 39.2 : 26.5 : 34.3 56.6 : 43.4 51.0 : 49.0 41.6 : 29.3 : 29.1

(b) Female Students Only

621 76.7 : –8.1 : 31.4 71.2 : 28.8 98.6 : 1.4 69.3 : –5.6 : 36.2
622 66.3 : 10.9 : 22.8 75.5 : 24.5 82.8 : 17.2 65.4 : 12.2 : 22.4
623 58.5 : 3.6 : 37.9 61.1 : 38.9 83.2 : 16.8 56.1 : 6.4 : 37.5
625 41.1 : 26.5 : 32.4 57.1 : 42.9 50.0 : 50.0 39.7 : 29.2 : 31.1
626 39.5 : 14.5 : 46.0 49.5 : 50.5 66.3 : 33.7 35.6 : 16.9 : 47.4
629 52.3 : 5.7 : 42.0 56.4 : 43.6 69.2 : 30.8 50.7 : 6.2 : 43.2
630 46.7 : 3.7 : 49.7 48.8 : 51.2 63.8 : 36.2 48.3 : –1.1 : 52.8
632 39.4 : 31.8 : 28.8 61.9 : 38.1 51.8 : 48.2 40.4 : 35.3 : 24.3

620 62.5 : 17.9 : 19.6 77.6 : 22.4 77.4 : 22.6 60.9 : 19.4 : 19.7
628 36.4 : 20.6 : 43.0 53.3 : 46.7 72.0 : 28.0 36.7 : 20.4 : 42.9
631 44.3 : 28.7 : 27.0 64.5 : 35.5 54.2 : 45.8 44.3 : 27.6 : 28.1

(c) Male Students Only

621 48.5 : 20.6 : 30.9 64.6 : 35.4 60.9 : 39.1 51.6 : 16.9 : 31.5
622 60.9 : 21.9 : 17.2 79.6 : 20.4 73.5 : 26.5 63.3 : 20.5 : 16.3
623 50.5 : 11.4 : 38.1 58.7 : 41.3 69.8 : 30.2 50.0 : 14.3 : 35.7
625 91.2 : –24.2 : 33.0 72.5 : 27.5 119.9 : –19.9 87.0 : –22.2 : 35.2
626 48.8 : 18.5 : 32.7 61.5 : 38.5 67.3 : 32.7 55.0 : 15.6 : 29.4
629 64.9 : 7.8 : 27.3 70.7 : 29.3 78.2 : 21.8 66.9 : 9.1 : 24.0
630 61.4 : 5.7 : 32.9 65.4 : 34.6 74.3 : 25.7 62.6 : 7.7 : 29.8
632 63.4 : 11.9 : 24.7 71.8 : 28.2 76.2 : 23.8 67.7 : 13.6 : 18.7

624 20.6 : 42.6 : 36.8 52.3 : 47.7 35.6 : 64.4 23.7 : 41.0 : 35.3
627 57.7 : 16.1 : 26.2 71.1 : 28.9 76.2 : 23.8 59.9 : 15.7 : 24.4

(Unweighted) Average Mixture

(a) 47.2 : 18.1 : 34.7 60.4 : 39.6 63.8 : 36.2 47.8 : 18.4 : 33.8
(b) 51.2 : 14.2 : 34.6 61.5 : 38.5 69.9 : 30.1 49.8 : 15.2 : 35.0
(c) 56.8 : 13.2 : 30.0 66.8 : 33.2 73.2 : 26.8 58.8 : 13.2 : 28.0
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TABLE 4.2

Residual (error) mean squares and F ratios

Run # df Regressing vi Regressing TMi F Ratios

QVW QVW AST QVW:Opt QVW:QV
Unif.Opt QVW:QW TMi

(a) All Students

620 111 191.9 194.3 2716. 2737. 1.702 2.750 3.130 1.436
621 176 179.5 178.0 2614. 2723. 0.256 3.351 18.148 4.700
622 180 208.5 211.7 3031. 3091. 2.374 5.731 10.302 2.801
623 244 157.4 157.9 2302. 2548. 1.332 1.717 61.674 14.145
624 68 216.6 220.1 3010. 3074. 1.555 8.060 8.575 1.746
625 83 150.8 150.4 2024. 2203. 0.876 0.117 15.311 4.756
626 264 226.6 226.2 3494. 3720. 0.798 5.928 48.165 9.612
627 117 182.4 183.4 2666. 2759. 1.329 3.102 12.034 3.070
628 58 171.8 168.7 2391. 2813. 0.466 4.554 23.815 6.300
629 235 239.7 239.0 3282. 3495. 0.639 1.563 37.081 8.694
630 202 163.2 162.7 2475. 2644. 0.661 0.808 34.997 7.975
631 118 188.1 188.7 2875. 2907. 1.198 9.954 14.657 1.669
632 128 185.4 183.4 2679. 2682. 0.299 5.486 13.130 1.064

(b) Female Students Only

621 94 150.3 157.0 2352. 2537. 3.150 0.333 6.200 4.775
622 76 159.0 159.1 2411. 2424. 1.015 0.461 2.612 1.210
623 130 155.8 157.3 2154. 2441. 1.619 0.174 28.993 9.791
625 40 115.0 110.2 1550. 1518. 0.122 2.597 3.718 0.558
626 138 203.6 203.6 3075. 3363. 0.980 2.497 27.787 7.560
629 122 208.4 207.4 2724. 3055. 0.693 0.229 27.376 8.528
630 107 131.1 131.2 1984. 2190. 1.054 0.068 19.357 6.659
632 70 143.1 140.6 2146. 2097. 0.364 3.451 3.706 0.187

620 111 191.9 194.3 2716. 2737. 1.702 2.750 3.130 1.436
628 58 171.8 168.7 2391. 2813. 0.466 4.554 23.815 6.300
631 118 188.1 188.7 2875. 2907. 1.198 9.954 14.657 1.669

(c) Male Students Only

621 78 199.6 195.5 2809. 2904. 0.191 3.911 10.645 2.353
622 100 226.7 234.7 3266. 3309. 2.796 5.385 3.849 1.676
623 110 153.5 151.4 2450. 2572. 0.247 1.244 20.642 3.780
625 39 142.9 160.0 1814. 2321. 3.453 1.953 3.927 6.734
626 122 255.9 252.1 3986. 4056. 0.061 3.065 11.126 2.090
629 109 270.9 274.3 3799. 3979. 1.685 0.479 9.991 3.623
630 91 192.9 192.8 2917. 3032. 0.974 0.222 11.861 2.828
632 54 219.1 217.6 3048. 3087. 0.808 0.665 4.203 1.360

624 68 216.6 220.1 3010. 3074. 1.555 8.060 8.575 1.746
627 117 182.4 183.4 2666. 2759. 1.329 3.102 12.034 3.070

The regression error mean squares shown in Table 4.2 are given in the scale of the predicted
variables, rather than the predicting variables. Mean squares in the latter scale are given in Table
4.4, the intention being that vertical comparisons within a column should be possible there. Within
each of the three groupings, the range of these mean squares is about the same for each of the four
regressions, being about 1.5 for Male Students only, 1.8 for Female Students only, and about 1.7
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TABLE 4.3

Correlation Coefficients of General Achievement measures and

Linear functions of ASAT sub-scale measures

Run # Regressing vi Regressing TMi

QVW QW QV Unif.Opt QVW ASAT

(a) All Students

620 0.704 0.695 0.694 0.693 0.696 0.686
621 0.654 0.646 0.607 0.653 0.647 0.623
622 0.701 0.690 0.680 0.692 0.700 0.689
623 0.689 0.686 0.584 0.685 0.693 0.648
624 0.692 0.646 0.643 0.675 0.692 0.672
625 0.614 0.613 0.511 0.603 0.621 0.562
626 0.690 0.682 0.617 0.688 0.674 0.644
627 0.737 0.729 0.705 0.730 0.741 0.725
628 0.797 0.779 0.697 0.794 0.807 0.759
629 0.705 0.702 0.646 0.703 0.733 0.710
630 0.637 0.635 0.550 0.634 0.634 0.595
631 0.776 0.754 0.743 0.770 0.764 0.757
632 0.629 0.608 0.577 0.627 0.623 0.615

(b) Female Students Only

621 0.674 0.672 0.646 0.646 0.640 0.592
622 0.615 0.612 0.597 0.601 0.612 0.595
623 0.724 0.723 0.646 0.715 0.739 0.691
625 0.692 0.667 0.655 0.689 0.706 0.696
626 0.705 0.699 0.629 0.700 0.697 0.655
629 0.741 0.741 0.670 0.738 0.770 0.732
630 0.605 0.605 0.502 0.595 0.611 0.543
632 0.540 0.507 0.505 0.534 0.532 0.528

620 0.704 0.695 0.694 0.693 0.696 0.686
628 0.797 0.779 0.697 0.794 0.807 0.759
631 0.776 0.754 0.743 0.770 0.764 0.757

(c) Male Students Only

621 0.683 0.663 0.627 0.681 0.684 0.660
622 0.760 0.745 0.749 0.744 0.756 0.746
623 0.648 0.643 0.558 0.646 0.635 0.602
625 0.691 0.672 0.652 0.621 0.702 0.564
626 0.682 0.672 0.645 0.681 0.662 0.648
629 0.681 0.679 0.644 0.668 0.717 0.694
630 0.688 0.687 0.636 0.680 0.683 0.658
632 0.727 0.723 0.701 0.717 0.729 0.712

624 0.692 0.646 0.643 0.675 0.692 0.672
627 0.737 0.729 0.705 0.730 0.741 0.725

for All Students. The mean squares themselves can be tested for homogeneity. In the case of the
regressions on the triplet, these lead to crude Bartlett test statistics of 51.9 on 12 df for all students,
38.4 on 10 df for female students, 20.8 on 9 df for male students, and 14.5 on 5 df for non-Government
colleges. On the assumption of normality for the errors, these test statistics indicate inhomogeneity
strongly for the first two and weakly for the latter two (c. 1% significance level). The last statistic is
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consistent with a long-term observation that correlations between ASAT and TE scores tend to be
lower inside the Government secondary colleges than outside. The weighted residual mean squares
in Table 4.4 indicate, since var(Ai) ≈ var(1.28× [Opt. mixture]) = 625 = 252, is that 40% to 50%
of the variability of even the optimal mixture of a Total ASAT score is unexplained variability
with respect to relative general academic achievement. This range corresponds to a signal to noise
ratio of about 1.5 to 1.0, whereas the smallest such ratio observed in estimating {vi} in the scaling
process is about 1.6, and for several colleges exceeds 3.0. This reflects the greater coherence of
school-based course scores amongst themselves as opposed to that of any combination of ASAT
scores with even the aggregate of courses scores.

The implication of this analysis is that the choice of the particular method of using any set of
Reference Scale scores affects the relative placement of colleges, to the relative advantage of some
students (and therefore disadvantage of some others) simply on account of the college they happen
to have attended. As will emerge from other analyses (Chapters 8 and 10), an Other Course Score
scaling procedure certainly reduces these residual mean squares, while from Table 4.2 it follows
that an optimally weighted mixture does rather better than the 1986 Total ASAT scores.

Correlation coefficients of ASAT and TE scores are given in Table 4.3 for those who prefer
to compare regression data this way. Such coefficients are less informative, and are harder to use
in secondary analyses. In particular, the only meaningful comparisons that can be made without
further data are across any row, and then only for the same regressing variable; vertical comparisons
(i.e., between colleges) are not valid. Nevertheless, the higher correlations consistently reported for
single-sex colleges in Year 12 Study tables, are not mere artefacts coming from different ranges of
scores: they do reflect a closer coherence between ASAT and course scores there.

Since a set of TE scores constitutes a single ranking of student achievement, it is certainly
inconsistent with any model of course scores to use more than one reference scale as in the 1986
ACT procedure where, depending on the course, one of ASAT−Q, −V , and −T is used. This
illogicality also introduces selection bias effects (see Chapter 12). Further, the correlations of course
scores wuth Other Course Scores are almost invariably rather higher than with any combination of
ASAT scores.

CONCLUSION 4.2. Each year, the optimal predictive combination of system-wide refer-
ence scores should be constructed to produce a single system-wide reference measure
of general ability in the “dimension” of school-based general achievement measures.

Note that in 1986, the optimal mixture of the scores {(AiQ AiV AiW )} was a 47 : 18 : 35
mixture.

CONCLUSION 4.3. The coherence between course scores and even optimally constructed
“Total ASAT score” to be used as a reference scale, varies significantly between col-
leges.

Using Reference Scale Scores

We now turn to the rather thornier problem of how to use these optimally constructed reference
scores when they are regarded as measures of developed academic ability and are assumed to
correlate “well” with the measures {Vi1} within each school (educational measurement workers
would look for an “equating” procedure answer to this problem). If indeed the scores correlate
perfectly, then there is no concern that it is correct to rescale each set {Vi1} via parameters (a, b)
say such that the first two moments of {a + bVi1} and {Ai} coincide for each set. In practice we
are confronted with somewhat smaller correlations, typically in the range 0.6 to 0.75, with the
standard deviation of {Ai} for each school similar to its value in the whole population (meaning,
the standard deviations are usually within 10%, and certainly 20%, of this global figure).
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TABLE 4.4

Residual Mean Squares in ASAT or Unif. Opt. Scale of

General Achievement Measures Predicted from ASAT Sub-scale Scores

Run # df Regressing vi Regressing TMi

Q–V–W Unif.Opt. Q–V–W ASAT

(a) All Students

620 111 292.2 286.0 298.7 306.7
621 176 324.5 311.7 329.6 346.9
622 180 321.8 315.3 322.7 332.3
623 244 286.3 293.3 283.3 316.2
624 68 344.4 368.1 344.4 362.4
625 83 331.6 338.9 327.0 364.2
626 264 387.8 388.3 404.0 433.3
627 117 257.1 256.4 253.8 267.0
628 58 214.9 238.1 205.5 249.8
629 235 387.5 402.6 356.5 382.1
630 202 326.8 330.2 328.9 355.3
631 118 227.0 229.1 237.6 243.7
632 128 358.7 361.1 363.1 369.0

(b) Female Students Only

621 94 283.1 316.7 306.2 336.9
622 76 389.0 362.7 391.3 404.1
623 130 281.7 287.1 268.7 309.3
625 40 277.5 247.2 267.1 274.5
626 138 387.8 388.0 396.4 440.2
629 122 389.8 412.7 351.9 401.3
630 107 336.7 355.3 332.8 374.5
632 70 318.4 310.6 322.2 324.1

620 111 292.2 286.0 298.7 306.7
628 58 214.9 238.1 205.5 249.8
631 118 227.0 229.1 237.6 243.7

(c) Male Students Only

621 78 292.7 258.1 292.0 309.7
622 100 263.3 280.0 267.1 276.4
623 110 286.9 300.1 295.2 315.4
625 39 259.3 353.5 251.7 338.4
626 122 369.0 382.1 387.5 400.1
629 109 360.5 376.5 326.7 348.5
630 91 295.8 300.8 299.7 318.5
632 54 325.7 358.6 323.7 340.7

624 68 344.4 368.1 344.4 362.4
627 117 257.1 256.4 253.8 267.0

Wtd.m.s. (a) 1984 327.1
Wtd.m.s. (b) 1064 320.3
Wtd.m.s. (c) 888 320.2

do. Non-Govt. 652 281.8
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True Score Modelling

Regarded as observed scores in a true score model, it is easily shown that the estimates of
Vi1, being aggregate scores, have considerably smaller errors than the ASAT scores Ai. However,
we shall see in Chapter 6 that there is a difference in structure between ASAT scores and the
school-based measures like Vi1. This is both a potential and real source of difficulties for their use,
whether in the existing scaling procedure or any other.

Let there be given ASAT scores {Ai} and school-based measures {Vi1}. To be consistent with
Assumption A 5 about ASAT scores we should seek parameters (a, b) such that

a+ bVi1 = vi + eiV , (4.1a)

Ai = vi + eiA (4.1b)

for “true scores” {vi} of general achievement cum ability and zero mean error variables {eiV }, {eiA}
with variances s2V , s

2
A respectively. Since

t(a+ bVi1) + (1− t)Ai (4.2)

is an estimator of vi with error variance t2s2V +(1− t)2s2A, we obtain a minimum variance estimator
by setting t = 1/[1 + (sV /sA)

2]. Now s2V ≈ s2A/5 so we may take t = 0.83. Equating means and
variances via the model at (4.1), we have

a+ b ave(Vi1) = ave(vi) = ave(Ai), (4.3a)

b2 var(Vi1)− s2V = var(vi) = var(Ai)− s2A

= b cov(Vi1, vi) = cov(Ai, vi). (4.3b)

The last of these relations, yielding the estimator b = var(vi)/ cov(Vi1, vi), is of the same form as
equation (2.16) satisfied by elements of the diagonal matrix B = D0. Substituting the estimator
with t = 0.83 from (4.2), when b at (4.2) equals 1, yields

estimate of b ≈ var(vi) + 5s2V /6

var(vi) + 5s2V /6
= 1, (4.4)

whereas the relation b2 var(Vi1) = var(Ai), which is close to what is used in Queensland’s “second
stage of the scaling procedure” (cf. e.g. McGaw, 1977; Keeves, McBryde & Bennett, 1977), yields

estimate of b ≈
√

var(vi) + s2A
var(vi) + s2V /6

≈
√

1 + s2A/ var(vi)

1 + s2A/[6 var(vi)]
. (4.5)

With correlation coefficients between {Ai} and {Vi1} around 0.7 (see Table 4.3), the ratio
s2A/ var(vi) ≈ 1.0, so the estimate of b ≈

√
12/7 ≈ 1.3. In terms of the model, the spread of

TAI’s introduced by the second stage of scaling muddies considerably the inter-school comparisons
of the estimates of relative general achievement produced within the schools. The size of this
muddying is sufficient to be noticeable, so from a technical viewpoint, it should be brought more
under control if feasible (which it is). We do not discuss whether this muddying is to be regarded
as socially desirable either in masking levels of academic achievement as determined by the data
produced, or else in biasing such levels depending on the group (school) where the TAI’s have been
determined. Whichever is the case, it is not in accordance with the principle enunciated at the
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outset of Chapter 2. We conclude that, irrespective of the reasoning used, the ACT system was
correct in 1977 to opt not to use this second stage.

One-factor Model

Given both this inconsistency in estimating b by equating variances as below (4.4) and the
fact that it involves a multivariate approach to the data set in constructing {Vi1} but a bivariate
approach in using {Ai}, consider again equations (4.1). Note in particular that (4.1b) is of the
same form as equations (2.13) and (3.1) for the scores Yij used to construct Ti which estimates a
multiple of vi. In that one-factor model, the error variance terms var(eij) and var(eiA), are not
necessarily conceptually distinguishable, comprising as they do both model-fit and measurement
error components. We may therefore consider each ASAT score Ai as a potential estimator of vi in
the same way as any scaled course score Yij is an estimator of vi. There is of course a superficial
difference: neither the ACT nor Queensland systems uses the ASAT score as a possible contributor
to the TAI, but that is no reason for not considering its potential as a contributor to the relative
general achievement/ability measure Vi1 when so far as the scaling procedure is concerned a most
desirable aim is to secure as a scaling criterion variable a quantity that has good correlational
properties with the data. To this end, we find in practice that a set of course scores {Xij} can
correlate marginally better or worse with the criterion “sum of scaled scores in all other courses”
when ASAT scores are included as one of these other courses.

Interlude: Principal Component Representations and Reference Scale

Consider a set of scores much as in Chapter 2 but where now the scores are the (n+1)-vectors
(Yi1 · · · Yin Ai)

′. We take the assumption A 4 that general ability can be validly measured by a
mix of content from the humanities, . . . , and the sciences, to be equivalent to asserting that when
the n courses represent a balanced curriculum, the ASAT scores estimate Vi1 first and foremost,
with negligible weight on a second factor Vi2 (usually, a quantitative/verbal contrast factor), so
that, hopefully, only measurement error in Ai relative to Vi1 remains. Around (3.14) we noted that
a two-dimensional space generally suffices to describe the courses scores, so this last statement is
equivalent to asserting that the scores {Ai} should be indistinguishable from the other component
scores {Vik : k = 3, . . . , n} before introduction of the scores {Ai}. Analyses in Chapter 6 do not
support this sanguine outlook.

Assume here without loss of generality that
∑

Ai = 0 =
∑

Xij (cf. below equation (2.1)).
If these scores are regarded as determining the scale across all schools, then in determining the
matrix of multipliers B = diag({β1, . . . , βn, βA}) we should now use βA = 1 in place of det(B) = 1.
Equations (2.16) are still to be satisfied where now, after rescaling, we should have

ȳi =
β1Xi1 + · · ·+ βnXin +Ai

n+ 1
, (4.6a)

βj =
var(ȳi)

cov(Xij , ȳi)
. (4.6b)

EXAMPLE 4.1. To gain some insight as to what may happen with extreme versions of scores {Ai},
consider the case where {Ai} has correlation 1.0 with {Vi1}, which implies that it is uncorrelated
with all other components {Vik : k = 2, . . . , n}, and that Ai = (γ/

√
n )Vi1 for some γ > 0.

From the earlier discussion we would expect that the transformation Y ∗
i = B∗(Y ′

i Ai)
′ with B∗ =

diag((γe′ 1)) should yield a representation Y ∗
i = L∗V ∗

i with ℓ∗j1 = 1/
√
n+ 1 . To check this, observe

that
B∗(Y ′

i Ai)
′ = (γY ′

i (γ/
√
n )Vi1)

′ (4.7)
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so the covariance matrix Σ∗ of {Y ∗
i } equals

γ2

(
Σ cov(Vi1, Yi)/

√
n

cov(Vi1, Y
′
i )/

√
n var(Vi1)/n

)
= γ2

(
Σ (λ1/n)e

(λ1/n)e
′ λ1/n

)
. (4.8)

The sum of elements in the jth row of Σ equals

n∑

k=1

cov(Yij , Yik) = cov(Yij , (
√
n )Vi1) = λ1 , (4.9)

which is independent of j, and n(λ1/n) = λ1 so the last column of Σ∗ is linearly dependent on
the first n columns. Thus the smallest eigenvalue of Σ∗ is λn+1 = 0. It can now be verified that
Σ∗ = L∗diag({λ∗

k})(L∗)′ where

L∗ =

(
e/

√
n+ 1 ℓ2 · · · ℓn e/

√
n(n+ 1)

1/
√
n+ 1 0 · · · 0 −

√
n/(n+ 1)

)
, (4.10a)

λ∗
k =





γ2(n+ 1)λ1/n k = 1,

γ2λk k = 2, . . . , n,

0 k = n+ 1.

(4.10b)

Further, if we make the identifications

V ∗
ik =





γ
√

(n+ 1)/n Vi1 k = 1,

γVik k = 2, . . . , n,

0 k = n+ 1,

(4.11)

then we have Y ∗
i = L∗V ∗

i . Note that

corr(Ai, Vi1) = 1 implies cov(Yik, Ai) = const. (all k). (4.12)

EXAMPLE 4.2. For general {Ai} define coefficients mk (k = 1, . . . , n) by

mk = cov(Ai, Vik)/λk . (4.13a)

When the right-hand side below does not vanish identically, there is some non-zero mn+1 which
when fixed defines {Vi,n+1} by

mn+1Vi,n+1 = Ai −
n∑

k=1

mkVik . (4.13b)

It is easily checked that any set {Vi,n+1} defined this way is orthogonal to {Vik} for k = 1, . . . , n.
Equation (4.13b) is equivalent to the representation

Ai =
n+1∑

k=1

mkVik . (4.13c)

Now suppose that {Ai} satisfies the latter equality at (4.12), i.e., that

cov(Yik, Ai) = C (k = 1, . . . , n) (4.14)
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for some positive constant C. Then

C =
n+1∑

k=1

mkℓrkλk =
n∑

k=1

mkℓrkλk (4.15)

since in

Yir =
n+1∑

k=1

ℓrkVik =
n∑

k=1

ℓrkVik (4.16)

we have ℓr,n+1 = 0. Sum over r = 1, . . . , n and recall that the elements of ℓk have sum ℓ·k which
equals

√
n for k = 1 and vanishes otherwise. Then we have

nC =

n∑

r=1

n∑

k=1

mkℓrkλk =

n∑

k=1

mkℓ·kλk = (
√
n )m1λ1 , (4.17)

i.e., m1λ1 = C
√
n . Substitute this result in (4.15) to give

C = m1ℓr1λ1 +

n∑

k=2

mkℓrkλk = C +

n∑

k=2

mkℓrkλk .

Thus, defining µ1 = 0, µk = mkλk (k = 2, . . . , n), we have Lµ = 0. Consequently, since L is
orthogonal, µ = 0, i.e., mkλk = 0 for k = 2, . . . , n, and therefore cov(Ai, Vik) = 0 for k = 2, . . . , n.

The covariance matrix of {(Y ′
i Ai)

′} is

(
Σ Ce
Ce′ var(Ai)

)
. (4.18)

Consider now the set {(γY ′
i Ai)

′} for some non-zero γ. This has covariance matrix

(
γ2Σ γCe
γCe′ var(Ai)

)
. (4.19)

For the last column to be linearly dependent on the other n columns there must exist a non-zero
n-vector µ such that

γ2Σµ = γCe and γCe′µ = var(Ai) . (4.20)

Each column of Σ sums to λ1 so the former of these relations implies that, if such µ exists, then
γλ1e

′µ = nC, which with the latter implies that

λ1 var(Ai) = C2, i.e., var(Vi1) var(Ai) = [cov(Ai, Vi1)]
2, i.e., corr(Ai, Vi1) = 1.

Taken together, Examples 4.1 and 4.2 show that, unless Ai is a multiple of Vi1, reduction to the
simple form as at (4.10) does not occur: more than the largest and the (new) smallest eigenvalues
of {(γY ′

i Ai)
′} are affected by seeking a rescaling matrix B for {(Y ′

i Ai)
′}.

One-factor Model (cont.)

Should the scale be determined by the component cov(Ai, Vi1) in much the same way as Vi1 is
constructed via the vector e? Or by the part of Ai belonging to the space containing the “signal”,
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i.e., the fraction cov(Ai, Vi,n+1)/
√

var(Ai) var(Vi1) of
√

var(Ai) ? Or by the whole of
√

var(Ai) ?
Broadly speaking, the last possibility is closest to current ACT practice. The first possibility is
consistent with Chapters 2 and 3, and effectively asserts that if {Ai} is poorly correlated with
{Vi1} then the present scaling procedure spreads scores out too much relative to the spread of the
averages. This implies a similar muddying operation to the one noted already below (4.5).

Put another way, the first possibility has the effect of asserting that, if school-based scores
diverge markedly from whatever external ranking criterion is offered, then a conservative approach
to scaling is adopted, with both above and below average scores compressed more towards the mean
than at present. This is consistent with A 4 : if aptitude is measured validly by ASAT scores, then
when {Ai} and {Vi1} show a larger than reasonable residual mean square on the scale of the ASAT
scores, there is divergence from the “valid ASAT score measure”, and this divergence should not
be used to excess in promoting an unwarranted inflation in the spread of the school-based scores.
This is also consistent with the analysis of discrepancies in Chapter 6, with being conducive to
a reduced incidence of “outlier” scores of ASAT relative to the school-based scores, and with the
consistency of using as a reference scale for {Vi1} an optimal mixture of {(AiQ AiV AiW )}. Above
all, incorporating scores {Ai} into the one-factor model makes the estimation of {vi}, whether from
course scores or ASAT scores, a consistent exercise.

For all these reasons we choose this first approach.

Weight of ASAT Scores in a One-factor Model

There are two practical considerations involved in choosing a weight for ASAT scores in their
contribution to estimates of the scaling criterion variable vi. First, not all course scores Xij are
in fact scaled by whatever statistical scaling method is used, due to their coming from groups
with small numbers of students. When such numbers are small, the error variables in the scaling
criterion variables can easily dominate the scaling operation: all systems in Australia have evolved
procedures to cope with “small groups”, tantamount to giving greater weight to examiners’ or
teachers’ experience in setting the level of the course scores concerned. In the ACT, procedures for
fixing small group course scores also include reference to both the ASAT scores and other course
scores of the students concerned.

REMARK 4.1. The ACT system already uses Other Course Score scaling criteria.

Fixing some scores independently of a statistical scaling process has two implications:

(1) these scores should have equality of input with other scores in determining the overall use of
the reference scale scores if at all possible; and

(2) there is no reason a priori that such scores should affect systematically the signal to noise ratio
of the scores at the college of the students concerned.

We deal with (1) by including the independently fixed scores in estimates of the student
parameters vi which are scaled against the reference scale. We can cope with (2) in either or both
of two ways. One is to alter the scale factor (currently, 25.0) of the reference scale scores so as
to yield TE scores of about the same spread as existing scores. The other is to choose a larger
or smaller weight for ASAT scores so as again to yield TE scores of similar spread to the existing
scores. The choice of a weight also arises directly in implementing the scaling procedure in that,
in the notation of Chapters 2 and 3, the estimates of the scale parameter βA should be close to
1.00. In practice, using the latter device on its own requires a weight of 1.5 course scores whereas
applying the results of the algebra below to data indicates that the weight should be less than
1.0. Thus, a combination of the two methods is required. We consider now the question of what
weight to attach to reference scale scores in a scaling procedure model, and defer the choice of an
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appropriate scale for ASAT scores in relation to small group scores to our discussion of ACT data
in Chapters 10–12.

Use the one-factor model for scores

Yij = vi + eij , (4.21a)

Ai = vi + eiA , (4.21b)

in which var(eij) = σ2
j , var(eiA) = σ2

A. What weight wA of reference scale scores in the estimator for
vi leads to (most nearly) unbiased estimators {bj} of the scale parameters {βj}, and in particular
bA ? An explicit answer needs further constraints.

Typically, there is in place a prescription as to how scores Yij may contribute to an aggregate
score, i.e., weights wij exist such that the aggregate is defined as

n∑

j=1

wijYij , (4.22)

so that an estimator of vi from scaled course scores alone is similarly defined as

est(vi) =

∑n
j=1 wijYij∑n
j=1 wij

. (4.23)

By analogy therefore, inclusion of the reference scale scores is effected by using

ṽi =

∑n
j=1 wijYij + wAAi∑n

j=1wij +wA
(4.24)

as an estimator of vi. Method of moment estimators of the scale coefficients are then

bj = var(ṽi)/ cov(Yij , ṽi), (4.25)

which includes the case j = A on putting Yij = Ai. To be asymptotically consistent these estimators
should be (asymptotically) 1.0, so we evaluate the expectation of numerator and denominator as

var(ṽi) = var(vi +
∑

jwijeij/ni) = var(vi) + var(
∑

jwijeij/ni), (4.26a)

cov(Yij , ṽi) = cov(vi + eij , vi +
∑

jwijeij/ni) = var(vi) + var(wijeij/ni), (4.26b)

with ni =
∑

j wij , and the notation
∑

j allows for different students to take different sets of courses.
To make progress with (4.26), first fix the set of courses as a common set j = 1, . . . , n with wij = 1
for such j, so ni = n+ wA. The equations become

var(ṽi) = var(vi) +

∑
j σ

2
j + w2

Aσ
2
A

(n+ wA)2
, (4.27a)

cov(Yij , ṽi) =

{
var(vi) + σ2

j (n+ wA) if j 6= A,

var(vi) + wAσ
2
A/(n+ wA) otherwise.

(4.27b)

Substitute in (4.25). Algebraic simplification yields

bj − 1 =
wA(wAσ

2
A − σ2

j ) +
∑

k(σ
2
k − σ2

j )

(n+ wA)2[var(vi) + σ2
j /(n+ wA)]

(4.28a)

bA − 1 =

∑
k(σ

2
k − wAσ

2
A)

(n+ wA)2[var(vi) + wAσ2
A/(n + wA)]

. (4.28b)
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From this last equation, the estimator bA is model unbiased when

wA = (
∑

jσ
2
j )/nσ

2
A . (4.29)

With ACT data, it is commonly found that σ2
A is larger than (almost) all σ2

j , so using wA as at
(4.29), the estimates of the scale parameters for the course scores are closer to unbiased as well. It
is also evident from (4.28a) that if σ2

j = σ2 for all courses j, then using (4.29) makes all the other
estimators asymptotically unbiased like bA.

Reference to the discussion around equations (4.1)–(4.4) shows that using (4.29) coincides with
the implications of the bivariate adjustment approach underlying the argument there. This gives
added support for our integrated one-step approach of treating the course scores Y and the reference
scale scores as a single multivariate data set, rather than a two-step route with first estimates of
vi being extracted from the set of course scores and subsequently adjusted onto a “common scale”
using a bivariate procedure with a separate set of reference scores.

Work of Cooney (1975, 1978) and Hasofer (1978) can also be read as studies in a bivariate
setting of the question of finding a “natural” weight for reference scale scores. Within the framework
of the concepts as above, neither Hasofer nor Cooney made plain that each component of the
bivariate pairs of observations they considered constitutes an estimator of some common factor vi
with errors in both estimators. Cooney’s use of a variance equating method as a resolution of the
dilemma as to how to provide a scale is equivalent to assuming that both variables have the same
measurement error variances, which in the present context means assuming that σ2

A = σ2 = σ2
j for

all courses j. However, the work is inappropriate for present applications because it concentrates
on a bivariate rather than multivariate setting.

While any choice of weights wij is possible in (4.22), the choice as given is arguably the most
appropriate in terms of reflecting the components of i’s total studies: certainly it reflects existing
practice in constructing both aggregates and scores themselves. Other possibilities include

(i) the use of weights that are inversely proportional to the measurement errors, and

(ii) the use of only those courses contributing to students’ “best m subset” aggregates.

Possibility (i) assumes that measurement errors can be estimated satisfactorily, which presumes
much more in the way of model robustness in what is being estimated than appears warranted on
the evidence, especially in relation to the sizes of groups in the ACT where, except for English and
Mathematics, almost all courses have around 100 or fewer student scores. The latter possibility
would entail replacing vi in (4.1a) by some larger quantity that depends on the number of courses
that i takes (cf. the discussion on order statistics in Daley (1985)). It would also complicate
applicability of the model, with selection effects dominating considerations and making invalid the
use of the quantities vi in estimating the parameters (αj , βj) in courses which do not contribute to
i’s aggregate. It may also encourage students to adopt a fragmentary approach to their curriculum
and concentrate on a minimal number of courses required to contribute to an aggregate rather
than studying their chosen curriculum more evenly (or as evenly as any of us may be wont!). In
the context of the two-factor model it would imply the use of a quantity influenced more by the
contrast factor vi2.

CONCLUSION 4.4. Reference scale scores and course scores should be treated as a single
data set for scaling purposes using the Method-of-Moment estimation procedure to
find the scale parameters (β βA) with a weight factor wA attached to the reference
scale scores given by (4.29), and the normalization constant for (β βA) determined by
setting βA = 1.

CONCLUSION 4.5. The multivariate data set approach of Conclusion 4.4 coincides with
the two-stage approach of constructing school-based estimates of relative general
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achievement within a college, and subsequently combining these optimally with an
external set of reference scores to produce system-wide estimates of relative general
achievement.

CONCLUSION 4.6. The one-step procedure of the Method of Moment estimation pro-
cedure can be dissected so as to furnish colleges, if they so desire, with approximate
“within-college” estimates of their students’ relative general achievements or “within-
college” TE scores, at any time that a school-based set of quasi-course scores is known.
In particular, a purely school-based set of relative achievement scores can be furnished,
but such scores would have no between-school comparability. Such estimates would
be subject to adjustment to reflect system-wide comparability at a final stage when
system-wide reference scores are determined and made known.

Educational Measurement Approach

The approach of educational measurement advisors in the ACT and Queensland as to how to
use statistical methodology in a scaling procedure has been to construct a common assessment task
(or set of tasks), administer it to all students, and construct a reference scale or scales from the
resulting score(s) to be applied in a bivariate setting via a two-moment equating method. By this,
I mean for example that the reference scores {Ri} would be used to determine a scale for {Vi1} for
a given school (hence, a given set of student indices i) by means of the relations

ave(Ri) = ave(Vi1), var(Ri) = var(Vi1). (4.30)

At present in the ACT, three scores are available for use as reference scores, namely the Quantitative
and Verbal sub-scale scores of ASAT, and a Writing Task score. It has largely been an act of faith
that these three scores, {Qi}, {Vi} and {Wi} say, when combined in a certain prescribed fashion,
constitute an adequate reference scale. While correlations are regularly calculated and published
annually in the Year 12 Study and briefer information in Queensland, there has been relatively little
discussion as to whether or not the scaling procedure is optimal, let alone that it is accomplishing
the task it has been assumed to be executing fairly. And as reading the discussion in Masters and
Beswick makes plain, when there is no model to provide any point of reference, the discussion can
rapidly lose direction and relevance.

The Outlier Problem

Suppose we represent purely school-based measures {vi} and ASAT scores {Ai} on comparable
scales. Inspection of ACT data shows that for some few students, typically around 1% to 3 or
4%, the absolute differences |Ai − vi| exceed 3 times the standard deviation of the differences.
These rates of difference exceed the Gaussian distribution rate of c. 0.1% by a large amount,
being closer to the order of the upper bound of 5% of the Camp-Meidell inequality for unimodal
distributions. Conversing with teachers in their franker moments leads to describing occasional
students being “lazy loafers”, i.e., higher academic ability and low achievement as determined by
school-based assessment tasks. The unquestioned use of the ASAT score data of such individuals
in any scaling procedure that assumes their equivalence as at A 5 with course scores to within the
limits of measurement error, and hence assumes the similarity of achievement and ability measures,
introduces biases and unnecessary noise into an already potentially noisy operation.

It is also the case that ASAT scores of students for whom Ai is in the “nonsense” score region
corresponding to an average score obtained by random guessing (below about 30% “correct” items)
are used without question.
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While we have shown at (4.29) how to fix a weight for using ASAT scores of most students,
the practical problem of coping with students whose scores do not meet the criteria that make
any statistical scaling operation valid, has been shunned by both the Accrediting Agency and
the 1986 Review Committee. “She’ll be right” attitudes do not apply to the use of statistical
procedures which can be quite sensitive to departures from assumptions, as ACT experience has
amply demonstrated. It is the case that allowance is made for certain groups of students, identified
by external criteria, whose ability and achievement measures may not necessarily match up as
groups: for NESB and MA students the use of their ASAT scores is annulled by prescriptive fiat.
What is needed is the extension of this idea to include some statistical quality control to ensure that
the ASAT and course scores used do more consistently measure some common underlying factor.
The existing practice of using scores of glaring outliers is a wanton disregard for the practicalities
of applying a statistical technique in such a precise fashion as occurs.

Thus, just as Masters and Beswick commented about lack of a statistical model, so the following
should not be surprising.

CONCLUSION 4.7. The present statistical use of ASAT scores lacks attention to critical
detail. Scrutiny shows that the data deviate excessively from the assumed close rela-
tionships. Without these relationships, further checks and adjustments are necessary
to justify the statistical use of ASAT scores.

Several Reference Scales?

In discussion in 1986 following completion of MATHEF it was decided to use more than one
reference scale in the scaling of course scores to produce ACT TE scores. This step involves some
illogical thinking, and biases (“statistical artefacts”) can result.

For example, the motivation for using ASAT-Q scores as a reference scale for Mathematics
course scores comes primarily from face validity considerations. These are supported by statistical
analyses which typically show that

corr(Maths, Q) > corr(Maths, T ) > corr(Maths, V ). (4.31)

However, it is typically also the case that

corr(Maths, mean of Other Course Scores) > corr(Maths, Q), (4.32)

so on statistical grounds, means of Other Course Scores provide an even better reference scale. In
modelling terms, it is certainly the case that the set of scores having the maximum correlation is
“best” because the space complementary to the direction of the first principal component (“common
factor”) is then smaller and of lesser possible influence, and it is in this complementary space that
uncertainties and biases are found. In the case of (4.31)–(4.32), the same set of Mathematics course
scores is involved, so in representing them as

Mi = µi + eiM , (4.33a)

(Ref’ce scale)i = µi + ei,Ref , (4.33b)

the inequalities concerned are equivalent to the error variances s2Ref ≡ var(ei,Ref) satisfying

s2OCS < s2Q < s2T < s2V . (4.34)

If we judge scaling criteria by “small errors”, then means of Other Course
Scores yield the best.
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Inspection of data reveals that students whose scores most influence these errors (those at the
extremes of the Mathematics scores) tend to be those with more (higher end) or fewer (lower end)
science course scores. This implies that there is also some face validity in the use of Other Course
Score scaling criteria: it is not just a piece of arithmetic.

In systems like NSW which use both examination and school-based marks, the examination
marks currently serve two purposes: they are assessment marks for certification purposes, and they
provide a system-wide reference scale for scaling each school’s set of school-based assessments in
the course concerned. This enables the latter to be reported on the Certificate also in terms of
being comparable with the examination-based score. These exam.-based scores have a mean of
60 and standard deviation of 12.5 for the candidature of each 2-Unit subject. For the purposes
of producing a scaled aggregate for admission to a university through UCAC or to the Canberra
CAE, the average of the two scores is used after being scaled by an Other Course Score scaling
procedure to adjust for the different candidatures in the various courses.

The use in the ACT of sub-scale scores in 1986–88, and in Morgan & McGaw’s (1988) study
of the possible use of a variety of reference scale scores, in part reflects a desire to emulate a family
of separate reference scales as though derived from external examinations, without the curriculum
constraints entailed in students being required to take such exams. It has been presumed that
standardizing these reference scales to the same mean and standard deviation over a common
population, is enough to ensure “fairness” in their use. We shall see empirically in Chapter 12 (e.g.
Tables 12.1, 12.2 and 12.7) that this need not be the case.

In modelling terms this departure from “fairness” can be seen on two grounds as follows. Take
two pairs of course scores, each with a different reference scale, the latter scores having the same
first two moments for a common population. Suppose that for one pair of course and reference scale
scores the error variance is rather smaller than for the other pair (think for example of Mathematics
with Q, and English with V or T ). Then firstly, what is being substantively measured in terms of
(4.33) has a lesser spread where the error variance is higher (recall McGaw, 1987). Equivalently,
in terms of the analysis of Chapter 2, course scores do not generally contribute “equally” to an
aggregate merely by virtue of having the same mean and standard deviation. Secondly, it is likely
that students who score more highly on the more specific reference scale will be concentrated in
that course rather than the other. This means that by choice of course, some students can be
guaranteed a higher mean reference scale score when there are several fixed reference scales being
used rather than a single scale (it is this effect that shows visibly in Table 12.7).

Another aspect of the selection effect of skills required for various courses, can be based on
a suggestion that skills are developed in students in relative terms, and that measures like ASAT
scores basically rely on these exceeding some base level. For students not satisfying this assumption,
a base level or “nonsense” ASAT score results. Current educational pressures tend to encourage
students to choose science related courses if their skills are sufficiently above the assumed base
level. Consequently, students opting for those courses whose scores are scaled against ASAT-Q in
the ACT, tend to be selected as those with higher ASAT scores, and whose ASAT-Q scores are
higher still.

CONCLUSION 4.8. In terms of both face validity and modelling considerations, Other
Course Score scaling is both consistent with a model aimed at producing a single
aggregate and with yielding an aggregate free(r) of bias from selection effects.



CHAPTER 5

Some Statistical Properties of ASAT Scores

The object of this chapter is to provide some information on statistical properties of ASAT
scores. The particular properties that concern us relate to their use as reference scales in Queensland
and the ACT. This essentially means asking how consistently such scores or sub-scale scores can
be represented (cf. equation (4.1b)) as

Ai = vi + eiA . (5.1)

Measurement Error Variances

Every year the Australian Council of Education Research supplies certain information to the
users of ASAT on some basic properties of the ASAT scores for the version used in testing towards
the end of the previous year. I start by discussing the measurement error variance τ2A.

Up to and including the 1985 test τ2A was determined directly from the K–R 20 formula11 .
This formula is deduced by assuming that each student’s responses to the questions or items on
a test of length N have statistically independent errors (i.e., choosing incorrect responses to the
various items). When applicable, the formula implies that τ2A cannot be any larger than N/4. These
independence assumptions are quite strong, and at face value certainly of dubious applicability to
ASAT papers where the items are grouped together, referring to a common passage of stimulus
material (i.e., reading matter to be comprehended and providing a context for the questions). In
1986 an alternative estimate of τ2A was computed by the split-half method: since in the ACT and
Queensland each year’s ASAT paper is administered as two papers each of 50 items, and these
papers are so compiled as to be of equivalent difficulty and scope of material, a measure of the
reproducibility of the scores is furnished by comparing total scores on the two separate papers. In
the ACT, Queensland and WA this yielded consistent estimates of τ2A ≈ 30 ≈ 5.52 rather than
the estimates c. 20 ≈ 4.52 obtained from the K–R 20 formula over several years. In what follows,
I use this larger figure as a measure of τ2A for an ASAT total score, denoted here as ASAT-T to
distinguish it from the sub-scale scores ASAT-Q and ASAT-V .

In Queensland, the raw total score is rescaled for use as ASAT-T for scaling purposes. In 1985,
the standard deviation of the crude scores12 was 14.2, so if we can relate τ2A to eiA in (5.1) by

τ2A ≡ var(eiA) , (5.2a)

11 So named from its appearance as equation (20) in a paper by Kuder & Richardson (1937)!
12 The data concerning 1985 ASAT scores and its sub-tests are taken from Appendix 3 of Tertiary

Entrance in Queensland: A Review (1987). As an example of data from another year—and I thank ACER

for this information—the correlation coefficient of scores on the two papers equals 0.763, with standard

deviation of the Total raw score 14.018, and of sub-scale scores 9.154 and 6.450 for Q and V respectively,

these being based on 55 and 41 items. The measurement error variance of T is then

14.0182/[1 + 2(0.763/0.237)] = 26.416 = 5.1402.

With the same assumptions as for (5.3), those entries are replaced by

(55/100) × 26.42 × (25/9.154)2 = 108.4 and (41/100) × 26.42 × (25/6.450)2 = 162.71.

Thus the measurement error variance in 1985-style ACT ASAT-T is 1.102 × (108.4 + 162.7)/4 = 82.00,

which is smaller than the whole test figure of (25/14.018)2 × 26.416 = 84.02. The signal to noise ratio

equals (625 – 82.00)/82.00 = 6.62, and error variance of Q – V equals 271.1 = 16.462.

42
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then the “signal to noise” ratio

var(vi)/τ
2
A = (14.22 − 30)/30 = 5.72. (5.2b)

In the ACT, ASAT-T was initially constructed as in Queensland. Starting c. 1984 it was
constructed by rescaling ASAT-Qand -V sub-scale scores to a common standard deviation, forming
the 50 : 50 average of these two scores, and rescaling the result so that the population standard
deviation equals 25. (Onwards from 1986 a Writing Task score has been included in the Verbal
component, but this does not concern us for the moment.) In 1985, the raw ASAT sub-scale scores
Q and V were based on 49 and 47 items and had standard deviations of 8.9 and 6.4 respectively.
Regard13 the measurement error τ2A as being additive over and proportional to the number of items,
so the contribution per item equals 0.3, and the measurement error variances of raw Q and V are
14.7 and 14.1 respectively. Rescaling the sub-scale scores to a standard deviation of 25.0, these
increase to

14.7 × (25/8.9)2 = 116.0 and 14.1× (25/6.4)2 = 215.1. (5.3)

Take corr(Q, V ) = 0.65. Then to rescale the average (Q+ V )/2 to a standard deviation of 25.0 we
must multiply it by

√
2/(1 + 0.65) = 1.10. Using independence of the measurement errors again,

this implies that the measurement error in the 1985 ACT ASAT-T score, when it has a standard
deviation of 25, equals

1.102 × (116.0 + 215.1)/4 = 100.3, (5.4)

(cf. (25/14.2)2×30 = 93.0 had the raw ASAT-T score been used). This slightly larger figure implies
that for the ACT in 1985, when τ2A in (5.1) is taken as the measurement error of Ai,

var(vi)/τ
2
A = (25.02 − 100.3)/100.3 = 5.23. (5.5)

Later we shall need an estimate of the measurement error of Q− V : for 1985 this equals 4/1.102

times the error in ASAT-T , i.e., 3.30 × 100.3 = 331.6 = 18.22.
Recall that the standard deviation of the raw scores on a test of length N is to the first order

proportional to N . It is not uncommon for the number of items used in constructing the verbal
sub-scale scores to be rather less than the number in Q. If we now adjust the existing figures for
a test in which the numbers of items used are 52 for Q and 42 for V (and 6 not included because
the responses are either inconsistent or else fail to distinguish between the Q and V sub-scales), we
should have in place of (5.3)

15.6 × (25/[8.9 × 52/49])2 = 109.3 and 12.6× (25/[6.4 × 42/47])2 = 240.8,

giving as a measurement error in a 1985-style ASAT-T , in place of (5.4),

1.102 × (109.3 + 240.8)/4 = 105.9.

The situation in the ACT is now a little more complex as Writing Task scores W are also used.
The raw scores for the Writing Task are compiled by adding four readers’ scores, each on the scale
{0, 1, . . . , 6} (I understand that the score 0 has never been given, so for norm-referencing purposes
the scale is quite coarsely graduated); raw scores are therefore in the range 4 to 24. The actual
distribution in 1986 is shown in Table 5.1; it has mean 12.72 and standard deviation 3.30.

13 The assumptions of additivity and constancy of the components of the measurement error variance are

certainly too strong, else the Kuder–Richardson formula should be applicable! Simply as an approximation,

the likely effect for usage below is that the measurement errors of the sub-scale scores are over- and under-

estimated for Q and V respectively.
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TABLE 5.1

Distribution of Raw Writing Task Scores in 1986

Score # F # M All Score # F # M All

4 2 11 13 15 122 83 205
5 9 20 29 16 121 65 186
6 9 21 30 17 67 46 113
7 17 45 62 18 56 28 84
8 30 61 91 19 39 11 50
9 60 86 146 20 19 5 24
10 93 119 212 21 7 1 8
11 97 121 218 22 1 2 3
12 150 118 268 23 2 0 2
13 159 137 296 24 1 0 1
14 154 81 235

Because the standard deviation of the raw scores is smaller than 4, an appreciable component
of any measurement error is attributable to the discrete nature of the scale. Scores equal to (say)
14 necessarily come from a set {3, 3, 4, 4} (or maybe even {3, 3, 3, 5} etc.) so if a true score model
is appropriate, their measurement error variance is at least 4.0. There is little information from
which to estimate the overall measurement error variance. There are two obvious components of
this variance: one is from the discrete nature of the scale (to me, it seems too coarse), while the
other is due to the essay topic — and since only one essay is written each year, direct estimation of
error from that source can only be by inference from elsewhere. If we guess that the measurement
error variance equals 3.0, then the signal to noise ratio of the test is about 2.63.

The computation just given is predicated on an application of the true score model to indi-
vidual scores. It is arguable that by assessing the Writing Task subjectively four times, breadth of
assessment criteria from different examiners is provided so that e.g. scores of 3 and 4 from different
examiners are giving different information with no scores being “incorrect”. Since the total mark
is constructed by aggregation of marks from the same four examiners, their sum defines a ranking
via the same mix of assessment criteria.

As for information from “elsewhere”, a crude idea of measurement error on a single essay (but,
written at speed rather than in a more considered fashion in response to much stimulus material)
can be gleaned from published NSW HSC data in the 1-Unit General Studies course for which
a student is required to write four essays in the examination. For the three years 1984–86 the
correlation rES say between exam. marks and school-based assessments was observed to lie in the
range 0.77 to 0.79. Now a true score model shows readily that the signal to noise ratio for the
four exam. essays equals 1/[(1/rES)− 1], assuming that school-based assessments and exam. marks
have equal “errors”, or else 1/[(1/(rES)

2−1] if the school-based assessments are regarded as having
much smaller errors than the exam. paper: the former suits present purposes better in the sense
of leading to a larger ratio (!). This signal to noise ratio SNR say, is for four essays: the ratio for
a single essay, assuming independence of “errors” in the scores on each essay, equals SNR/4. For
0.77 < rES < 0.79, this yields 1.09 < SNR/4 < 1.19 : this is rather smaller than our guesstimate
for the Writing Task scores.

CONCLUSION 5.1. The units of the integer-valued sub-scale scores Q, V and W corre-
sponded in 1986 to 12%, 17% and 30% of their respective standard deviations. The
measurement error standard deviations of these scores are about 4 units for Q and V
and 2 to 3 units for W .
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TABLE 5.2

Gender-linked Differences of ASAT Sub-scale Scores 1979–85 and their

Standardized Gender-linked Discrepancies.

Year QF – QM VF – VM – DFM (Q, V)

ACT ACT ACT WA Qld

1979 – 4.0 0.4 12.6 14.6 14.3
1980 – 3.1 0.0 8.6 12.7 10.8
1981 – 5.6 – 0.4 14.0 15.4 14.8
1982 – 5.2 – 1.1 10.2 14.3 12.0
1983 – 4.1 0.2 12.2 9.2 12.5
1984 14.0
1985 9.8

Note: Differences of sub-scale scores Q and V are of raw scores, so they are rescaled to standard deviation

of at most 25.0 by multiplication by 25/9.0 and 25/6.5 respectively, so for 1979 for example, – 12.6 =

(25/9.0)( – 4.0) – (25/6.5)(0.4). 1979–83 data are from Table 3.1 of Adams (1984), 1984–85 data from

Masters & Beswick (1986).

Psychometric Stability of ASAT Scores

The second question we consider is the psychometric stability of ASAT scores. On the basis
of published evidence this question can be addressed in at least two ways. First, ask whether the
gender-linked difference DFM ≡ AF − AM of mean ASAT scores for females and males is stable
between each paper (a new paper is produced each year). Three independent pieces of information
were cited in Daley (1985) indicating that in this respect the papers are noticeably unstable:

(i) regression analyses of the differences DFM that remove the effect of different retention rates
show too large a residual variation;

(ii) the differences DFM in the three regions using the test (WA, Queensland, and the ACT) are
more consistent between different regions for a given paper than they are between papers for
a given region;

(iii) the analyses of gender-linked discrepancies between ASAT and school-based assessments (TE
scores) in the ACT are distinctly different between different papers.

Second, sub-scale scores are produced for each test, and we can then find the gender-linked
discrepancy between such scores. Write QF , QM , VF , VM for the sub-scale means, so that (approx-
imately), when the overall mean score is standardized to 0 and the numbers of females and males
are approximately equal,

QF ≈ −QM , VF ≈ −VM ,

whence for the gender-linked discrepancy we have

DFM (Q, V ) ≡ QF −QM − VF + VM ≈ 2(QF − VF )

which has measurement error variance 4 × 18.22/NF (see the note below (5.5)). In the ACT
NF ≈ 1000 so the standard error of DFM (Q, V ) is about

√
36.42/1000 ≈ 1.32.

The ACT gender-linked discrepancies in Table 5.2 yield a chi-square test statistic of
27.0/1.322 = 15.5 on 6 d.f., which exceeds the 95% significance level. The estimates for 1979–
83 are if anything under-scaled, so the test statistic is on the conservative side.

Our next conclusion comes firstly from (i)–(iii). It is reinforced in the analysis as just described,
from which we also conclude that the Quantitative and Verbal sub-scale scores are not psychome-
trically stable across the ACT population. Note that if we computed the corresponding statistic
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for Queensland, the larger population (upwards of 20,000) would yield a much smaller standard
deviation in place of 1.32 , e.g. the chi-square test statistic is about 10.9/(36.42/10000) = 82.3.

CONCLUSION 5.2. For the purpose for which ASAT scores are used in the ACT, neither
they nor the Quantitative and Verbal sub-scale scores are psychometrically stable with
respect to gender differences in different years.

Relative Structure of Quantitative, Verbal and Writing Task Scores

In Tables 5.3 and 5.4 the correlations of the three reference scale scores are shown for the
whole system, also broken down by sex, and for most TE-score qualified students at each college.
In detail, the scores used in Table 5.4 exclude those of non-English speaking background and
Mature Age students; Table 5.3 was computed with Tables 6.1–2, where by requiring both English
and Mathematics scores as well, about another 10% of students were excluded. The differences
between these subsets and the whole population do not have a significant impact on the thrust of
our conclusions.

In comparison with other studies (e.g. Breland & Griswold, 1982) the surprising feature here
is that corr(V, W ) is not higher, closer to 0.5 say, especially given that corr(Q, V ) is around
0.65. Interpret 0.65 as indicating that a broad range of general ability is represented. In terms
of face validity, one would expect the ASAT-V sub-scale scores to be closer to the Writing Task
scores than the −Q sub-scale scores. After all, these two sub-scales are constructed by looking
for both divergence between responses to the different items on the ASAT paper and convergence
towards the humanities and science sets of questions respectively, i.e., they are deliberately made
to be “different”. The interpretation14 of the correlations is that, contrary to expectations based
on face validity, the ASAT-V sub-scale scores are closer to the −Q sub-scale than the Writing
Task scale, an interpretation also borne out by the work in Chapters 4, 6 and 7. In addition to
different measurement error properties, the reason may also be tied in with the contrast in modes
of assessment between the multiple choice scores Q and V and the essay format of the Writing
Task: the former emphasizes problem solving skills while the latter is much freer, with selection of
material left to the student.

TABLE 5.3

Correlations of Q, V and W scores within each college

College Q/V Q/W V/W

1 0.577 0.215 0.336
2 0.667 0.279 0.346
3 0.483 0.243 0.367
4 0.550 0.355 0.416
5 0.656 0.368 0.432
6 0.689 0.329 0.420
7 0.634 0.111 0.385
8 0.634 0.292 0.356

9 0.679 0.426 0.356
a 0.652 0.489 0.368
b 0.659 0.210 0.338
c 0.712 0.460 0.483
d 0.677 0.313 0.290

14 But, note as before that our conclusion is based on just one ASAT paper and Writing Task.



5. Some Statistical Properties of ASAT Scores 47

TABLE 5.4

Correlations and Covariances of Writing Task and ASAT Sub-scale Scores

and their Loadings

Correlations Covariances

(a) All Students (excl. NESB and Mature Age)

Q 1.000 1.010
V 0.626 1.000 0.633 1.013
W 0.249 0.387 1.000 0.250 0.390 1.000

Q Loading 0.824 0.418 0.382 0.830 0.416 0.384
V Loading 0.883 0.159 – 0.441 0.891 0.156 – 0.043
W Loading 0.634 – 0.764 0.117 0.631 – 0.767 0.119

Latent Roots 1.863 0.783 0.354 1.879 0.786 0.358

% Var. Explained 62.1% 26.1% 11.8% 62.2% 26.0% 11.8%

(b) Female Students Only

Q 1.000 1.025
V 0.651 1.000 0.644 0.956
W 0.316 0.385 1.000 0.305 0.359 0.907

Q Loading 0.847 0.354 0.396 0.876 0.338 0.378
V Loading 0.876 0.221 –0.428 0.858 0.169 –0.437
W Loading 0.659 –0.750 0.061 0.600 –0.736 0.073

Latent Roots 1.919 0.737 0.344 1.865 0.684 0.339

% Var. Explained 64.0% 24.6% 11.5% 64.6% 23.7% 11.7%

(c) Male Students Only

Q 1.000 0.835
V 0.664 1.000 0.631 1.081
W 0.353 0.404 1.000 0.322 0.419 0.993

Q Loading 0.854 0.339 0.394 0.754 0.291 0.427
V Loading 0.876 0.238 –0.420 0.927 0.298 –0.364
W Loading 0.682 –0.730 0.046 0.691 –0.717 0.023

Latent Roots 1.962 0.704 0.333 1.906 0.688 0.315

% Var. Explained 65.4% 23.5% 11.1% 65.5% 23.7% 10.8%



CHAPTER 6

Discrepancies Between ASAT and Course Scores

This chapter overlaps in part with Chapter 7, but is closer in spirit to Chapter 5, in pursuing
properties of ASAT scores per se in relation to course scores. The more specific matter of the “sex
bias in ASAT” problem is noted, though not comprehensively, in Chapter 7.

Gender-linked Mode of Assessment Discrepancy

Ever since the end of 1978, if not twelve months earlier, it has been known15 in the Australian
Capital Territory that there exists a gender-linked discrepancy between ASAT and course scores.
The type of discrepancy observed16 has been known in educational psychology and educational
measurement circles for decades, though it has not necessarily been recognized as being associated
with the use of multiple choice methodology for assessment as opposed to those methods of as-
sessment like essay-writing commonly used in external examinations and school-based assessments,
especially but not exclusively outside of the so-called exact sciences. Now that suitable data are
available, the hypothesis has been tested in more detail as below as a result of which it follows that
the discrepancy is properly referred to as being gender-linked on account of the last part of the
following statement.

15 Immediately after the first ACT Tertiary Entrance scores were issued in 1977, some girls’ schools
contacted the ACT Schools Accrediting Agency. They queried these new scores on the grounds that the
proportion of their students eligible for admission to the Australian National University on the basis of
this new aggregate score was significantly decreased from the proportion eligible in 1976 and earlier on the
basis of New South Wales HSC aggregate score (see Table 7.1). At the same time, there was a marked
increase in the proportion of eligible students from boys’ schools (this change may have been noted, but
to my knowledge it was not queried (!)). Twelve months later, Morgan (1979) analysed results from
December 1978 and observed a gender-linked discrepancy between ASAT and TE scores. These analyses
were repeated independently in 1984 (see Daley, 1985), in ignorance of Morgan’s work. In mid-1986, after
the report MATHEF had been written, a fuller data set became available to document the 1977 query (see
Table 7.1). All these data made it plain that the reason for the shift in 1977 was a sex bias in ASAT.
There has been a lamentable failure, certainly since 1984, if not before, to remove the effects of the bias.
On the basis of all the evidence available, statistical adjustment of the somewhat variable ASAT scores is
the surest way of producing TE scores that best reflect the policy principles P 1–4 concerning school-based
assessments. For reasons why the bias still persists, see §1.19 of MATHEF for some formal reservations,
and footnotes 2 and 3 to Chapter 7.
16 Daley (1986a) has a literature review covering experiences in USA and UK, including external exam-

ination systems in UK. To this can now be added (i) the detailed analyses summarized in Tables 6.1–3
below; (ii) Writing Task v. ASAT multiple choice Verbal scores for 1986 and 1987 as in Table 6.5; (iii)
data documenting the original complaint in Table 7.1; and (iv) data from Queensland similar to those of
Daley (1984) (these data consist of 1987 ASAT scores and the Queensland internally produced RAG score,
that system’s analogue of the ACT TE score: see Figure 3 of ASAT and TE Scores (1988)). No official
report contains anything close to a comprehensive account of the variety of evidence available: MATHEF

gave a biased account of the matter by failing to note significant information that ran contrary to its pre-
ferred conclusion: it mentions neither the ASAT sex difference variability nor the consistent gender-linked
discrepancies in quantitative and verbal domains (see Table 6.3).

48
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CONCLUSION 6.1. Students’ relative abilities as assessed by multiple choice methods
in the ASAT test and reported on Quantitative and Verbal sub-scales, are positively
correlated with but differ systematically from school-based determinations of their
relative achievements in the related areas of Mathematics and English respectively,
this difference being a characteristic of the two modes of assessment used in the two
pairs of scores. Irrespective of the Quantitative or Verbal “dimension” concerned,
females tend to perform relatively better on the school-based measures and males on
the ASAT test.

The evidence for Conclusion 6.1 is given in Tables 6.1 and 6.2. It is based on the scores as used
and/or reported on 1986 Year 12 Certificates, i.e., the school-based data have been scaled by the
existing procedures. Using scaling parameters estimated by the Method of Moments would make
little difference to the thrust of the analyses.

We start by illustrating the use of the terms gender-linked difference, gender-linked discrepancy,
and gender-linked bias, in the context of average scores AF and AM for females and males on the
ASAT paper, and similarly YF and YM in some course. Each pair of scores yields a gender-linked
difference, namely AF − AM and YF − YM . We call their difference (AF − AM )− (YF − YM ) the
gender-linked discrepancy of the two scores or measures; it must be approximately zero for the
scores to measure a common factor subject only to measurement error, as is required of reference
scores for a “fair” scaling operation (cf. also Chapter 8). If the discrepancy is systematically positive
or negative, there is then evidence of a significant non-zero gender-linked discrepancy between the
two purportedly similar measures. When e.g. a policy declaration identifies one measure as being
the “correct” measure to use, we speak of a gender-linked bias in the other measure when there is
a significant non-zero gender-linked discrepancy between the two measures.

CONCLUSION 6.2. On the basis of the TE score construction principles P 2–4, Conclusion
6.1 implies that ASAT scores are biased for use as reference scores in the ACT. If
similar principles hold in Queensland, the same conclusion holds there also.

Denote student i’s scores in English, Mathematics, and ASAT-Q and -V sub-scales by Ei, Mi,
Qi, Vi respectively. Regard these scores as being represented by expressions of the form

(score) = (general ability cum achievement) + (quantitative/verbal contrast)

+ (school-based assessment/ASAT multiple choice contrast) + (error), (6.1)

or in algebraic notation,

Ei = vi + vi2 +∆i + eiE , (6.2a)

Mi = vi − vi2 +∆i + eiM , (6.2b)

Vi = vi + vi2 −∆i + eiV , (6.2c)

Qi = vi − vi2 −∆i + eiQ , (6.2d)

where the student parameters vi, vi2, ∆i, have variances S
2
1 , S

2
2 , S

2
3 respectively, and the four error

terms we shall for the moment regard as being mutually uncorrelated and uncorrelated with the
student parameters, and having the same variance s2. Simple algebra then leads to expressions for
the three student parameters and an overall error term as

vi + ei1 = 1
4 (Ei +Mi + Vi +Qi), (6.3a)

vi2 + ei2 = 1
4 (Ei −Mi + Vi −Qi), (6.3b)

∆i + ei3 = 1
4
(Ei +Mi − Vi −Qi), (6.3c)

ei4 = 1
4 (Ei −Mi − Vi +Qi), (6.3d)

where the error terms represent



50 Determining Relative Academic Achievement

TABLE 6.1

Summaries of Simple ANOVA on English, Mathematics, ASAT-Q and -V scores

No. College Means Standard Deviations

Sum QVDiff MADiff Sum QVDiff MADiff Error

(a) All Students

175 1 –4.565 –2.009 –0.678 19.006 9.613 9.450 6.773
169 2 1.274 –0.201 –0.109 20.329 8.689 8.376 6.332
212 3 2.892 –1.564 –0.919 16.796 9.142 9.006 6.089
79 4 –0.424 –2.393 –1.253 17.747 9.393 9.773 6.705

244 5 1.899 –0.020 –0.515 20.489 9.959 10.202 6.719
178 6 5.144 –1.070 –1.278 19.538 9.021 9.140 6.378
174 7 6.304 –1.224 –0.429 17.824 9.720 9.338 5.831
112 8 1.188 –1.587 –1.018 18.291 8.797 9.137 6.046
110 9 0.687 1.958 0.324 19.179 8.099 8.507 5.461
56 a –5.576 4.808 0.785 19.388 8.151 8.646 5.897

116 b –0.056 6.321 1.170 19.433 8.435 6.648 6.338
72 c 0.578 –3.574 –0.077 20.133 8.173 9.463 5.723

120 d 1.047 –4.531 –0.339 19.228 7.965 8.264 5.610

(b) Female Students Only

95 1 –7.618 1.588 1.828 17.858 8.489 8.807 6.998
78 2 –2.180 3.949 1.487 18.784 7.218 8.675 6.108

114 3 4.690 0.706 1.089 17.294 7.616 9.029 6.246
37 4 –0.617 1.506 2.438 18.353 9.803 7.580 5.253

124 5 0.681 3.528 2.339 20.401 8.562 9.713 6.283
91 6 7.181 2.179 0.727 19.674 7.130 8.508 6.048
88 7 5.113 2.695 1.716 16.509 9.018 9.243 6.040
61 8 –2.281 1.270 2.059 15.989 8.253 7.953 5.778

110 9 0.687 1.958 0.324 19.179 8.099 8.507 5.461
56 a –5.576 4.808 0.785 19.388 8.151 8.646 5.897

116 b –0.056 6.321 1.170 19.433 8.435 6.648 6.338

(c) Male Students Only

80 1 –0.939 –6.281 –3.655 19.790 9.152 9.375 6.540
91 2 4.235 –3.758 –1.476 21.221 8.285 7.905 6.549
98 3 0.799 –4.205 –3.254 16.031 10.056 8.438 5.933
42 4 –0.255 –5.827 –4.504 17.417 7.594 10.398 7.792

120 5 3.158 –3.685 –3.465 20.588 10.004 9.887 7.146
87 6 3.013 –4.468 –3.376 19.276 9.561 9.353 6.739
86 7 7.523 –5.234 –2.623 19.097 8.769 8.965 5.593
51 8 5.337 –5.005 –4.698 20.091 8.259 9.169 6.307
72 c 0.578 –3.574 –0.077 20.133 8.173 9.463 5.723

120 d 1.047 –4.531 –0.339 19.228 7.965 8.264 5.610

ei1 = 1
4
(eiE + eiM + eiV + eiQ), (6.4a)

ei2 = 1
4 (eiE − eiM + eiV − eiQ), (6.4b)

ei3 = 1
4 (eiE + eiM − eiV − eiQ), (6.4c)

ei4 = 1
4
(eiE − eiM − eiV + eiQ), (6.4d)

and by assumption they are mutually uncorrelated with common variance s2/4.
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TABLE 6.2

Components of Variance from Table 6.1

College Standard Deviations

Sum QVDiff MADiff Error

(a) All Students

1 17.758 6.822 6.590 6.773
2 19.318 5.950 5.483 6.332
3 15.653 6.819 6.636 6.089
4 16.432 6.578 7.110 6.705
5 19.356 7.351 7.677 6.719
6 18.468 6.380 6.547 6.378
7 16.843 7.777 7.294 5.831
8 17.263 6.390 6.851 6.046
9 18.385 5.981 6.523 5.461
a 18.469 5.627 6.323 5.897
b 18.370 5.566 2.006 6.338
c 19.302 5.835 7.536 5.723
d 18.391 5.654 6.068 5.610

(b) Female Students Only

1 16.430 4.805 5.347 6.998
2 17.763 3.846 6.160 6.108
3 16.127 4.358 6.520 6.246
4 17.585 8.277 5.465 5.253
5 19.409 5.817 7.407 6.283
6 18.721 3.776 5.984 6.048
7 15.364 6.696 6.997 6.040
8 14.908 5.893 5.465 5.778
9 18.385 5.981 6.523 5.461
a 18.469 5.627 6.323 5.897
b 18.370 5.566 2.006 6.338

(b) Male Students Only

1 18.678 6.402 6.717 6.540
2 20.185 5.075 4.427 6.549
3 14.893 8.119 6.000 5.933
4 15.577 1.745 6.885 7.792
5 19.308 7.001 6.833 7.146
6 18.060 6.782 6.486 6.739
7 18.260 6.754 7.006 5.593
8 19.075 5.332 6.655 6.307
c 19.302 5.835 7.536 5.723
d 18.391 5.654 6.068 5.610

How adequate is the representation (6.1)? An indirect route is to take the four scores Ei, Mi,
Qi, Vi and subject their correlation matrix to a factor analysis. A more direct approach is to form
the estimates as in (6.3) and examine their first two moments and product moments, looking in
particular at the covariances (or, if they are easier to interpret, the correlations). These analyses
have been done in all colleges, and repeated within mixed-sex colleges for females only and males

only. The estimates of
√

S2
1 + 1

4s
2 ,

√
S2
2 + 1

4s
2 ,

√
(S2

∆ + 1
4s

2 , and 1
2s, are shown in the last four
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columns of Table 6.1. It is hardly necessary to undertake any formal statistical test to reject a null
hypothesis that {vi2} and {∆i} are components of no significant effect. By using the last column
of the Table to give a common estimate of 1

4
s2 for the other three columns, we can find estimates

of S1, S2, S∆ as shown in Table 6.2.

The standard deviations shown in Table 6.2 are certainly of similar order. The median estimate
of the error variance 1

4
s2 for all students is 6.0892 ≈ 37, which is about the same as for female

students only (6.0482) and a little smaller than for males only (6.3072 to 6.5402). The estimate 150 is
a convenient figure to use in general calculation for s2. Recall that below equation (5.5) we estimated
the measurement error of Vi ± Qi as 18.2

2, so if we regard this as estimating var(eiV )+var(eiQ) =
2s2 in the notation of (6.2), then should compare 1

2 (18.2
2) = 165.6 with the estimate 150 as just

deduced: the figures are certainly similar. Recall that we have estimated 1
4s

2 from (6.3d) on the
assumption that all terms ei· in (6.2) have a common variance, and that, if anything, we should
expect the variances of eiV and eiQ to be larger than the other two variances, which is what we
have in fact observed.

Finally, inspect the entries on the means in Table 6.1 (note that the mean for the sum reflects
our use of a mean 0.0 in place of 150.0). The mean for a college of the mode of assessment difference
(“MADiff”) is approximately zero by construction, but when dissected on a gender basis, it is seen
to be positive for males and negative for females. It cannot be regarded as a statistical artefact, as
Masters and Beswick (= M&B) alleged, whereas it can be regarded, contrary to Masters’ advice
to the Review Committee that wrote MATHEF, as an educational measurement phenomenon,
because all that we have done is to classify according to sex the estimates of a measurement
contrast ∆i which by the non-trivial nature of S2 is shown to be a characteristic of every student
in the population and not just a female/male student difference.

TABLE 6.3

Three Gender-linked discrepancies, 1984 ACT data

College E – ASAT-V M – ASAT-Q TE/3.6 – ASAT-T

copc 2.2 2.5 2.5
darc 4.1 1.8 1.5
dckc 6.6 1.7 4.3
ernc 1.6 7.9 2.9
hwkc 1.6 4.0 1.9
narc 4.1 3.7 4.8
phlc 5.5 0.6 3.4
strc 6.3 5.5 4.9

Weighted ave. (1984 scale) 4.3 3.2 3.4
ditto (1985 scale) 7.2 5.3 5.7

Source: Critique to 1986 Review Committee, based on data from Melb. Univ. Centre for Study of Higher
Education (Dean McKenzie) and ACT Year 12 Study.

Table 6.3 gives results of similar analyses done on 1984 data but weighted by the level (minor,
major, major-minor, double major) at which the course score could be included in students’ TE
scores. The scale represents 0.6 times that used onwards from 1985: the last row repeats the
summary data in the 1985 scale, because they can be compared directly with differences between
MADiff means under (b) and (c) of Table 6.1 for the eight mixed-sex colleges, yielding 5.5 =
1.828 − (−3.655), 2.9, 4.3, 6.9, 5.8, 4.1, 4.3, and 6.8. The global figure for 1984 of 5.7 is quite
similar to the average of the 1986 data restricted to English and Mathematics.
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TABLE 6.4

Correlations and Covariances of Sums and Contrasts of Table 6.1 (All Students)

College df Sum/QV Sum/MA QV/MA Sum/Err QV/Err MA/Err

(a) Correlations

1 175 –0.155 –0.080 0.136 –0.119 0.074 0.322
2 169 –0.012 –0.099 0.147 –0.018 0.109 0.471
3 212 0.073 0.103 0.092 0.124 0.042 0.404
4 79 –0.017 –0.052 0.117 0.015 0.064 0.564
5 244 –0.068 –0.128 0.211 –0.104 0.183 0.381
6 178 0.136 –0.113 0.057 0.117 0.243 0.360
7 174 –0.037 –0.110 0.114 –0.061 0.259 0.268
8 112 –0.058 –0.123 0.101 –0.138 0.101 0.243
9 110 0.020 –0.122 –0.183 0.100 0.040 0.083
a 56 0.263 –0.039 –0.111 0.104 –0.006 0.314
b 116 –0.228 –0.129 0.097 –0.021 0.148 0.090
c 72 0.138 –0.061 0.228 –0.062 0.117 0.369
d 120 0.010 –0.100 –0.043 0.041 0.049 0.272

(b) Covariances

1 –28.32 –14.37 12.35 –15.32 4.82 20.61
2 –2.12 –16.86 10.70 –2.32 6.00 24.98
3 11.21 15.58 7.57 12.68 2.34 22.15
4 –2.83 –9.02 10.74 1.78 4.03 36.96
5 –13.87 –26.76 21.44 –14.32 12.24 26.12
6 23.97 –20.18 4.70 14.58 13.98 20.99
7 –6.41 –18.31 10.35 –6.34 14.68 14.59
8 –9.33 –20.56 8.12 –15.26 5.37 13.42
9 3.11 –19.90 –12.61 10.47 1.77 3.86
a 41.56 –6.54 –7.82 11.89 –0.29 16.01
b –37.37 –16.67 5.44 –2.59 7.91 3.79
c 22.71 –11.62 17.63 –7.14 5.47 19.98
d 1.53 –15.89 –2.83 4.42 2.19 12.61

Is this gender-linked discrepancy coupled with the stronger gender-linked difference in the
Verbal and Quantitative areas (“QVDiff”) as suggested by Masters and Beswick? At face value
there is no evidence from Table 6.4 of significant correlation between the two measures ∆i and
vi2 because only one of the thirteen sample correlation coefficients is significantly different from 0
(assuming a bivariate normal distribution is appropriate).

CONCLUSION 6.3. Analysis via a linear representation gives no evidence of associa-
tion between the gender-linked discrepancy between course and ASAT scores and the
known gender-linked difference in verbal and quantitative skills.

We deliberately wrote “at face value” because, at least when Sum is one of the component
scores, the correlations here entail division by

√
var(Sum) , and these are about double the other

standard deviations (cf. Table 6.1). Using instead the covariances from part (b) of Table 6.4, shows
that all these covariances are of the same order.

If in place of a common error variance we suppose that the error terms in equations (6.2) have
variances s2E , s

2
M , s2V , s

2
Q, that are not necessarily all equal, then on the assumption that the main

effect variables vi, vi2, ∆i are uncorrelated, we should observe for the estimated correlations in
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Table 6.4 the quantities

cov(Sum, QV ) = 1
16
(s2E − s2M + s2V − s2Q), (6.5a)

cov(Sum,MA) = 1
16 (s

2
E + s2M − s2V − s2Q), (6.5b)

cov(QV,MA) = 1
16 (s

2
E − s2M − s2V + s2Q), (6.5c)

cov(Sum,Err) = 1
16 (s

2
E − s2M − s2V + s2Q), (6.5d)

cov(QV,Err) = 1
16
(s2E + s2M − s2V − s2Q), (6.5e)

cov(MA,Err) = 1
16 (s

2
E − s2M + s2V − s2Q), (6.5f)

On the basis of what is known about measurement errors in scores, we should expect the relative
magnitudes of these error variances to satisfy

s2V > s2Q > s2M and s2V > s2E > s2M . (6.6)

This means that in equations (6.5a) and (6.5f) the quantities should be positive, in (6.5b) and
(6.5e) negative, and in (6.5c) and (6.5d) of unknown sign. The second, fourth and sixth columns
bear out this prediction, though it does depend on assuming that the substantive variables in (6.5)
are uncorrelated; only the terms cov(QV,Err) indicate any possible contradiction, and these are
barely large enough to do so.

It is of some interest to use again the estimates from Chapter 5 to match the correlations
of Table 6.4. In the right hand side of (6.5f) we know from Chapter 5 that 1

16 (s
2
V − s2Q) ≈

(215 − 115)/16 = 12.5, so if we regard the rest as being about half this, we should have (say)
cov(MA, Err) ≈ 16 to 20. From Table 6.1 we use var(MA) ≈ 83 and var(Err) ≈ 37, and thus a
typical value for corr(MA, Err) is

(16 to 20)/
√
37× 83 = 0.30 to 0.37; (6.7)

the median value in the last column in Table 6.4 is 0.322, so we have consistency as regards order
of magnitude.

Use of Mode of Assessment Discrepancy Measures

In principle the quantities ∆i can be used to study groups other than the gender groupings and
which may consistently demonstrate a course and ASAT score discrepancy. This is one reason for
having discussed the analysis at some length in a report that is concerned with scaling procedures
per se rather than the sex bias problem which for some time has been treated at a political17 level
rather than technical.

Writing Task and Multiple Choice Verbal Scores

It is a simpler matter to note the further support for the mode of assessment explanation as
the origin of the sex bias problem coming from the Writing Task and multiple choice ASAT Verbal
sub-scale scores. While these two sets of scores reflect skills which at face value are strongly related,
the correlations in Chapter 5 show that the scores {Qi} and {Vi} are mutually closer than {Vi}
and {Wi}. Part of this explanation may lie in {Vi} and {Wi} having larger measurement errors
than {Qi}, but the evidence indicates that it is far from the whole explanation.

17 See discussion in Chapter 7, especially footnotes 2 and 3.



6. Discrepancies Between ASAT and Course Scores 55

TABLE 6.5

Within-gender differences and gender-linked discrepancies of

Mean Writing Task and ASAT-Verbal scores, 1986 and 1987

1986 Scores 1987 Scores (approx.)

College Differences Differences
Discrepancy Discrepancy

Female Male Female Male

copc 3.65 –4.04 7.69 0.11 –4.63 4.74
dckc 0.13 –9.77 9.90 –0.61 –7.94 8.55
ernc –0.52 –9.29 8.77 1.76 –7.79 9.55
hwkc 2.98 –12.53 15.51 1.05 –7.21 8.26
narc –2.32 –7.54 5.22 0.17 –4.05 4.22
phlc 6.00 –11.59 17.59 0.81 –10.15 10.96
strc 2.09 –8.01 10.10 6.17 –1.00 7.17
darc 7.91 0.11 7.80 9.42 4.30 5.12
ccec 9.88 1.00
merc 11.57 6.24
stcc 12.79 6.89
edmc 1.82 4.56
marc 0.31 2.78

All Govt. 1.72 –8.97 10.69 1.38 –6.27 7.65
All non-G. 10.54 0.75 9.79 5.61 3.85 1.76
System 4.73 –5.86 10.59 2.80 –3.39 6.19

Source: Year 12 Studies and the 1986 datum (inferred from rescaling of 1
2 (V + W) to ACT verbal

score) that corr(ASAT-V, Writing Task) = 0.4943.

Table 6.5 lists the differences between mean Writing Task and ASAT-V scores for the ASAT
score populations in each college, as can be found from Tables 8 of the ACT Year 12 Study.
These data show unequivocally for 1986, and less noticeably for 1987, that across the system, once
there is control of the schooling experience, females tend to have better scores on the essay-writing
assessment in the verbal area and males better in the multiple choice assessment. Again, note that
the data are based on just two sets of papers – though two are better than one as for most of this
report. It is particularly significant that the discrepancy is consistent with other data.

Another noticeable effect is that for both females and males, there is a difference in the mean
scores for students within the Government sector and those outside, with the latter having better
scores on the Writing Task and students in the Government sector having relatively better scores
in the multiple choice test.

CONCLUSION 6.4. Test results for both 1986 and 1987 showed systematic differences in
assessment by essay-writing and by multiple choice tests, with respect to both sex and
school type.



CHAPTER 7

Bias Problems with Reference Scales

Our discussion to this point has mostly been about the construction of scale as distinct from
location parameters, i.e., about “getting the right standard deviations” of scores, because it is in
this respect that various scaling procedures differ most markedly. The variety of scale parameters
from the different procedures has evolved out of presumption rather than proof. The problems and
techniques are necessarily more involved than the matter to which we now turn briefly, namely, to
potential problems of bias between reference scale and school-based scores: they are real problems
in the ACT and Queensland.

We saw in Conclusion 6.1 that discrepancies in assessment between school-based and ASAT
multiple choice test scores exist for individual students, irrespective of the educational “dimension”
being Quantitative or Verbal. These discrepancies are not quite equally distributed between females
and males, so they are gender-linked. We exhibited other gender-linked differences and discrepancies
in Chapter 6 also.

The reason such gender-linked discrepancies matter is that in both the ACT and Queensland,
the system authorities wish to assert that the multiple choice test based ASAT scores can be used
as a common scale on which the scores of entire schools are placed “fairly” by using the ASAT
scores for schools as a whole. No matter how it is done, these ASAT scores effectively provide the
means and standard deviations of schools’ Tertiary Entrance scores. The claim for the scores of
the schools being “fairly” placed on the scale is made irrespective of the school being mixed- or
single-sex, yet as seen in a literature that goes back decades (Daley, 1986a), multiple choice scores
exhibit a consistent gender-linked discrepancy relative to school-based assessments. Therefore, the
use of multiple choice tests purportedly to place school-based assessments on a common scale when
the gender mix of the groups varies all the way from 100% male to 100% female, introduces an
effect from the gender-linked discrepancy, and leads to bias in the resulting TE scores as reflecting
school-based assessment as claimed.

To see that a bias and substantial correlation can coexist, suppose given two samples of the
same size from a bivariate distribution with correlation coefficient r. Increase one of the variables
by a fraction b of its standard deviation in one of the samples, and decrease it the same amount in
the other sample. In standardized units, this gives a discrepancy between the two variables in the
two samples of size 2b, while elementary algebra shows that the correlation coefficient changes to

(r − b2)/(1 + b2) ≈ r − (1 + r)b2, (7.1)

which, for example, for r = 0.7 and b = 0.15 equals 0.66. One contributing factor to the slightly
lower correlations between ASAT and TE scores consistently observed in the ACT in mixed- rather
than single-sex colleges, is the gender-linked discrepancy between the two scores (typically, b is in
the range 0.1 to 0.2).

56
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The Original Complaint

A bias effect showed itself in the ACT in the first year of TE scores in 1977. Such shifts as seen in
the Girls’ schools column of Table 7.118 prompted an immediate query that started the gender-
linked discrepancy discussion in the ACT. In 1976, students from the ACT high schools and colleges
who twelve months later would have received ACT TE scores, had HSC aggregate scores uniformly
distributed over the range of NSW HSC aggregate scores. The changes between the 1976 HSC
aggregate and 1977 TE score distributions are given for the two groups of students in single-sex
ACT colleges, along with the discrepancy. The data from the female colleges alone show a significant
shift (use a Kolmogorov–Smirnov test). Taken together, the female and male college data show
that there was a gender-linked shift. Treat the 1976 HSC scores as though they were the 1977 TE
scores from the mixed-sex colleges; then Discrepancy in Table 7.1 corresponds to a gender-linked
discrepancy as computed in Tables 6.3–5 of from 9.5 to 12.5 points on the 1985 scale (cf. 5.7 in
Table 6.3, 10.6 and 6.2 in Table 6.5).

TABLE 7.1

Shifts in Proportions of ACT Single-Sex College Students in

Ranking by 1976 NSW HSC Aggregates and 1977 ACT TE Scores

Top proportion Girls’ schools Boys’ schools Discrepancy

10% – 5% + 11% 16%
20% – 6% + 9% 15%
40% – 12% + 10% 22%
60% – 15% + 4% 19%
80% – 14% 0% 14%

Numbers: 1976 281 220
1977 291 248

Sources: 1976 data from hardcopy output of NSW results made available to ACT in preparation for 1977
change. 1977 data from ACT Schools Accrediting Agency report on 1977 TE scores (no Year 12 Study was
produced for 1977 results).

The assertion (MATHEF, §7.1) that
“. . . [because] the major source of [the sex-bias problem] is the multidimensionality of
the scores . . . that are combined to form [an aggregate score, the problem is] not unique
to the Australian Capital Territory or unique to a system operating without external
examinations” ,

is little more than wishful thinking because it is contrary to the “two trends that suggested the
possibility of bias” (§1.2 of MATHEF). We now also see that it is contradicted by the evidence in
Table 7.1. Fortunately, the Review Committee gave it as “a view formed on balance on the basis
of conflicting evidence”. Regrettably, this basic evidence was never produced to the Committee,
nor sought by them nor any of their predecessors, save perhaps Morgan (1979). I acquired data to
compile it only when MATHEF was being received, so it was never discussed by the Committee.

18 The data in Table 7.1 were first assembled c. June 1986, after the report MATHEF had been compiled.
In July 1986 they were tabled at a meeting of the Accrediting Agency which has never referred to them.
They were included in a conference paper (Daley, 1986b) appended to Daley (1987b).



58 Determining Relative Academic Achievement

Some Average Achievement and Test Scores

Table 7.2 summarizes various mean scores for the thirteen colleges in the ACT where scores
are scaled by a statistical scaling procedure. They are given for all female, all male, and all students
at each college. The scores concerned are

TEACT ACT TE score as issued in 1986;

TEMM Quasi TE score using Method of Moment estimation in an Other Course Score scaling
procedure;

ASAT Total ASAT score as used in 1986 (roughly, 50 : 35 : 15 Q : V : W mixture);

vi The scaling criterion variable used in compiling TEMM;

AQU, AVB, AWR ASAT sub-scale and Writing Task scores;

OPTAT Optimal mixture of AQU, AVB, AWR as in Unif. Opt. in Tables 4.2–4.

The tabulated quantities have a system-wide mean of 0.0 (rather than 150.0) for ASAT and sub-
scale scores, and the TE scores are in fact divided by 3.6 (= number of course scores in best 3.6
aggregate).

The scaling procedure ensures that the mean ASAT and vi scores are approximately the same.
TEACT exceeds ASAT and TEMM exceeds vi by a similar amount for all colleges because of the
“best 3.6 course scores” selection effect. NBNBNB: Check this para. with original

OPTAT is similar in structure to ASAT except that it uses more AWR and less AVB. The
difference (ASAT) – (OPTAT) thus reflects a college’s standing in these two scores: not much
change for the Government mixed-sex colleges nor single-sex male colleges, but increases for single-
sex female colleges. Dissected by sex, there are decreases for males at Government colleges. Had
OPTAT been used in place of ASAT scores in producing TEMM scores, the gender-linked discrep-
ancy would have been reduced from a mean of about 6.4/25.0 = 0.25 standardized points to about
4.4/25.0 = 0.18 standardized points. TEMM scores are generally decreased from TEACT scores
because the latter were calculated using more than one reference scale score, thereby introducing
selection bias effects, being more marked for males than females as sub-scale scores were used more
often for males (Mathematics, Physics, Chemistry) than for females.

The assumption at A 5 that “ASAT scores are sufficiently strongly correlated with measures
of general relative academic achievement to make it feasible to rescale course scores to a ‘common
scale’ valid for comparing student achievement across all schools within the system”, can only
be as valid as the stated or unstated assumptions which it entails. The most critical of these is
that ASAT and school-based scores measure a similar variable, whether labelled achievement or
developed ability, in the primary “dimension” in which schools differ, subject only to measurement
(and model-fit) error. What is the extent of this error? And how do school-populations and their
sets of course scores differ?

To answer the second question first, school-populations differ (i) by their ASAT score distribu-
tions; (ii) by gender-mix; (iii) by both numbers and proportions of students seeking a TE score; and
(iv) by the length of time the students have attended the school or college. In terms of how these
differences may impinge on the ASAT/TE score relationship, (i) reflects the primary dimension of
assumption A 5; the gender-relationship (ii) is the one most explored; I have seen some evidence
re (iv) which is consistent with students entering an existing group having on average marginally
lower TE scores in relation to their ASAT scores than for the rest of the group they are entering
(but this is a smaller effect than the gender-linked discrepancy); I have not been able to discern a
systematic relation reflecting (iii).
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TABLE 7.2

Averages of general achievement and ASAT sub-scale measures

Run # TEACT TEMM ASAT vi AQU AVB AWR OPTAT

(a) All Students

620 7.14 6.45 1.70 1.94 -1.53 0.92 11.02 4.33
621 0.31 -2.11 -5.36 -6.02 -2.83 -5.71 -6.07 -5.78
622 5.44 5.06 0.70 0.93 0.51 -0.42 3.13 1.63
623 5.03 2.87 -0.89 -0.99 0.50 -0.49 -4.86 -2.03
624 6.63 5.00 0.80 1.25 4.37 -3.06 -1.31 1.25
625 3.86 0.72 -1.96 -2.27 0.33 -1.80 -6.84 -3.35
626 7.81 6.81 1.61 1.91 1.35 2.59 -1.64 0.66
627 7.72 6.29 1.51 1.84 6.11 -3.01 -2.76 1.63
628 -2.42 -3.57 -6.67 -7.67 -11.87 -3.52 8.07 -4.14
629 8.13 6.74 0.56 1.28 -0.04 2.18 -2.10 -0.47
630 10.41 9.24 4.74 5.53 5.17 3.46 1.44 4.51
631 5.97 5.42 0.18 -0.14 -8.24 3.29 16.95 3.65
632 5.65 3.13 -1.44 -1.64 -0.65 -0.93 -3.36 -2.13

(b) Female Students only

621 -2.43 -3.49 -10.95 -6.97 -11.83 -7.54 -4.65 -10.86
622 2.26 2.10 -3.19 -1.38 -7.76 -0.63 7.35 -1.37
623 6.41 4.71 -1.17 1.24 -2.93 0.67 0.83 -1.19
625 5.07 3.72 -6.75 0.29 -7.97 -3.34 -3.99 -7.30
626 6.90 7.04 -1.39 2.24 -5.87 1.98 5.12 -0.66
629 8.39 7.53 0.28 2.58 -3.74 4.34 2.05 -0.25
630 9.90 9.33 2.21 5.60 -2.25 3.49 9.70 3.92
632 4.05 2.89 -7.18 -1.70 -8.91 -3.98 -2.03 -7.11

620 7.14 6.45 1.70 1.94 -1.53 0.92 11.02 4.33
628 -2.42 -3.57 -6.67 -7.67 -11.87 -3.52 8.07 -4.14
631 5.97 5.42 0.18 -0.14 -8.24 3.29 16.95 3.65

(c) Male Students only

621 3.58 -0.47 1.33 -4.88 7.93 -3.52 -7.77 0.30
622 7.89 7.34 3.71 2.70 6.86 -0.25 -0.11 3.93
623 3.41 0.70 -0.55 -3.61 4.54 -1.86 -11.55 -3.03
625 2.62 -2.34 2.93 -4.89 8.82 -0.22 -9.75 0.69
626 8.82 6.56 5.00 1.53 9.49 3.28 -9.27 2.14
629 7.85 5.86 0.87 -0.17 4.08 -0.23 -6.73 -0.71
630 11.00 9.14 7.70 5.44 13.83 3.42 -8.21 5.21
632 7.68 3.44 5.89 -1.58 9.89 2.96 -5.06 4.21

624 6.63 5.00 0.80 1.25 4.37 -3.06 -1.31 1.25
627 7.72 6.29 1.51 1.84 6.11 -3.01 -2.76 1.63

Concerning the first question, the correlation between ASAT and school-based measures of
general relative achievement is generally around 0.70, implying that a school’s ASAT scores ex-
plain about 50% of the variation in its set of achievement measures, whereas the signal to noise
ratio of the latter is typically 1.6 to 3.6 so that the general measures vi explain from 60% to
78% of the variation (recall also Conclusion 4.7). Thus, there is ample scope for systematic ef-
fects to exist between ASAT and school-based achievement measures: this is precisely what we
showed in Chapter 6 by demonstrating the existence of a systematic difference in mode of assess-
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FIGURE 7.1

Masters and Beswick’s Groups M and N data: Regression to the Mean

(from p.32 of MATHEF)
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ments for the student body as a whole, not merely as a difference between the groups of females
and males within mixed-sex colleges. And as best we could tell (cf. Table 6.4), this difference
is not associated with the stronger difference in the Verbal and Quantitative areas (“QVDiff”)
as Masters & Beswick (= M&B) suggested.19

Masters and Beswick’s Evidence

The only substantive evidence that M&B offered to support their claim for a link between
courses studied and the gender-linked discrepancy between ASAT and course scores, involved their
analyses of such data in what they called Groups M and N (roughly speaking, students whose
TE scores have a substantial component of Mathematics and science scores, or Not). They gave
their results in graphs like Figures 5.3 and 5.4 of MATHEF, reproduced here. The dominant
feature in them is the regression to the mean effect which they properly called a predictable bias,
i.e., a statistical artefact, and not a bias per se (§§3.29–32 of their report). This implies that
any discrepancy of the two measures is well summarized by comparing the means of the groups
concerned as in Table 7.3. Two features in the table are obvious:

(a) All gender-linked discrepancies are positive in spite of an implied tendency towards “unidi-
mensionality” of course scores within each of the groups M and N.

(b) For Group M , there is a noticeable discrepancy between the shifts in ASAT and TE scores
from 1984 to 1985: this underlines the variable dependency on the ASAT paper of both gender-
linked differences of ASAT scores and the gender-linked discrepancy between them and TE
scores (see Conclusion 5.2).

19 MATHEF (§1.19) offers the following reasons for the Accrediting Agency’s persistent refusal to heed
the advice of its Technical Advisory Committee to remove the gender-linked bias affecting TE scores from
the single-sex schools in particular: ”[There] were those who were reluctant to believe that sex per se could
be the cause of the observed inconsistency between teacher assessments and aptitude test scores. They
claimed that no policy change should be introduced until further research had been undertaken to clarify
the bases of the sex differences. They suggested that the sex differences might be due to (i) the pattern
of course enrolments of the students, particularly in humanities and mathematics/science courses; or (ii) a
bias in teacher assessments in favour of female students rather than a bias in aptitude test scores in favour
of males.”
Four comments on these statements are relevant. (1) The ACT system asserts that teacher-based assess-
ments provide the standard for certification. Granted that female and male children do not have identical
upbringing, and granted that asking them to execute certain tasks (ASAT paper, or write an essay) may
evoke different behaviour, the presumption that sex should have no effect on assessments can only be viewed
as convenient unless shown otherwise. Morgan (1979) was the first to do so using ACT data. (2) There
is no policy change involved in producing TE scores that reflect teacher-based assessments consistently
for all students. Rather, it is illogical for the Accrediting Agency to continue to pretend that TE scores
have been and are being issued as equally fair to all students as far as is possible when they fail to reflect
teacher-based assessment in an unbiased manner. (3) Masters and Beswick were commissioned to undertake
research that would investigate the causes of observed sex differences, and the only explanation that they
produced was that these differences arose as a statistical artefact in the production of an aggregate. The
evidence offered in support (their analyses involving ”Groups M and N”) was fundamentally flawed: a valid
statistical analysis shows no such support (see Table 7.3). Further, a statistical artefact should be capable
of demonstration on the basis of extreme assumptions that if anything accentuate the cause; Masters and
Beswick offered no such demonstration, and I have tried and failed to provide such. This latter failure is not
surprising, because all the evidence points to the problem being a measurement problem, not a statistical
artefact. (4) If there is sex-linked bias in teacher assessments then a basic assumption (A 2) of the entire
assessment system is incorrect. To my knowledge no evidence to test the suggestion has been sought, nor
am I aware of any evidence from outside that supports it.
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TABLE 7.3

Mean TE and ASAT Scores in Mixed-sex Colleges for

Masters and Beswick’s Groups M and N.

Group M Group N
1984 1985 1984 1985

Females Numbers 372 406 413 373
3.6× ASAT 253.23 243.11 208.30 204.91

TES 264.15 261.15 227.89 224.29
3.6× ASAT-V 252.7 N/A 224.3 N/A
3.6× ASAT-Q 249.5 N/A 198.0 N/A

Males Numbers 532 514 236 200
3.6× ASAT 250.60 254.87 212.64 204.05

TES 255.68 256.63 213.79 205.48
3.6× ASAT-V 236.9 N/A 216.7 N/A
3.6× ASAT-Q 261.0 N/A 213.1 N/A

Gender-linked Discrepancy 5.85 16.75 18.44 17.95
do. relative to ASAT-Q 20.0 N/A
do. relative to ASAT-V 6.7 N/A

do. after approx. calibr’n – 5.1 – 0.5 7.5 0.7

Source: Copy from Dr. G. Masters in July 1986 of data processed for Masters and Beswick, and Table 6b
in their report. I thank Dr. Masters for the detailed data.

The discrepancy is about the same for both groups in 1985, indicating no apparent association
with the “dimensions” represented by Groups M and N . Yet, it is the data of 1984 that are closer
to what would be expected a priori on the basis of the known gender-linked differences given by
QVDiff. To see this, argue as follows. Make the “dimension” of the ASAT reference scores line
up more closely with the presumed dominant “educational domains” of the components of the TE
scores of the two groups by replacing ASAT-T scores for Groups M and N by {Qi} and {Vi}
respectively. Small increases in total TE scores will result, accompanied by somewhat larger shifts
of the female and male ASAT scores: fair-sized increases for females in Group N and males in Group
M , and moderate to smaller decreases for females and males in the other groups respectively.

Now check these predictions against data (and, for 1984 data I can only use the existing TE
scores, but they will be little changed, as shown by analyses at the ACT Accrediting Agency in 1984
in which both adjusted and sub-scale ASAT scores were used in place of ASAT scores). Gender-
linked discrepancies remain, though the relative standing of Groups M and N has interchanged
because in reality we have used a reference measure favouring males in Group M and females in
Group N , and have probably overcompensated.

On the other hand, removing a common gender-linked discrepancy effect as under calibration
leads to a position closer to no discrepancy in either group for 1984 data, and none for 1985 data.
The approximate position reached in the last line of Table 7.3 is about the closest position to
unbiasedness that can be attained using only the information available in 1984.

Of our observations, none supports M&B’s explanation of the gender-linked discrepancy as
being a statistical artefact attributable to different patterns of course selection, while others refute
it by exhibiting the discrepancy as a mode-of-assessment phenomenon or by contradictory data
as in Table 7.1. Had M&B used a statistical model to describe the scores, they may then have
been in a position to deduce algebraically how the alleged statistical artefact arises, because it
should be feasible to exhibit any such artefact in algebraic terms. I have tried to produce the
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claimed artefact via the route alluded to in M&B, or any other way. The only “bias as a statistical
artefact” I could concoct relied on a differential correlation coefficient effect that was discussed at
an Accrediting Agency meeting in mid-1985 (cf. McGaw, 1987). It was noted then that by making
extreme assumptions, about 10% of the bias as computed from data can be explained. The effect
comes from using a sub-optimal scaling procedure, rather than the aggregating operation itself,
because it vanishes on using Method-of-Moment estimation in an Other Course Score procedure
which is self-consistent.

Instead of such algebraic calculation, M&B resorted to imprecise argument based on contin-
gencies whose effects were not measured, then argued that the observed gender-linked discrepancies
were consequences of the unmeasured effects in an undefined model, and concluded that this sup-
ported their hypothesis (cf. MATHEF, §§5.29–30).

It is far from clear why the ACT Schools Accrediting Agency has allowed20 the bias in TE
scores to persist so long.

CONCLUSION 7.1. The gender-linked discrepancies between ASAT and course scores that
result in gender-linked biases in Tertiary Entrance scores reflect different processes
for measuring educational properties. The discrepancies are not a statistical artefact
of the process of aggregation.

Gender-linked Biases and Other Course Score Scaling

For the record, we construct from Table 7.2 the entries in Table 7.4 of the gender-linked
discrepancies between TEACT and ASAT, TEMM and ASAT, and TEMM and OPTAT. A large
part of the difference between TEACT and TEMM against ASAT comes from the use in TEACT
of sub-scale scores as reference mea- sures, whereas in TEMM there is only one reference measure
used and the scaling criterion variable is defined consistently via Other Course Scores. The change
in moving from ASAT to OPTAT is a consequence of changing the relative weighting of Writing
Task (increased) and ASAT-V (decreased). In no sense would one suggest, on this single data
set, that the gender-linked discrepancy is made noticeably different on account of using an Other
Course Score scaling procedure.

How can the bias be removed? The surest way is by statistical calibration as first canvassed
in 1984. The Accrediting Agency’s reasons for rejecting the operation then are now even less valid,
though its political unpalatability may well be unchanged. Technically, it is the preferred method,
not least because it ensures that the reference scale scores correlate optimally with the school-based
measure of general achievement (it follows from (7.1) that reference scale scores that incorporate a
bias correlate better on removing the bias).

20 While one can only speculate on motives, resistance to the principle of producing fair TE scores by
whatever means available, may be based amongst other reasons on any or all of (i) boys’ schools not wishing
to lose an advantage; (ii) the inability to justify an arbitrary statistical adjustment on the basis of gender
in 1983; (iii) an inability to distinguish between a gender-linked difference in a single set of scores and a
gender-linked discrepancy between two sets of scores that are positively correlated and supposedly measure
the same variable subject only to measurement error; (iv) unwillingness to disturb the status quo because
to do so may foster pressure for the return of an external examination system; (v) unwillingness to declare
that the Scholastic Aptitude Test scores ”objectively” determined by an independent outside body, the
Australian Council for Educational Research, can be other than 100% adequate for the purpose for which
they are used; (vi) unwillingness of the Educational Measurement Testing industry to acknowledge that
assessments based on multiple choice tests can be biased on the basis of culture or gender relative to another
method of assessing the ability or achievement of students, and that such other assessments may have equal
or greater validity.
In 1986 the Accrediting Agency showed that it saw the matter as political and not technical by sacking
and not replacing its Technical Advisory Committee, so losing years of accumulated knowledge.
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TABLE 7.4

Gender-linked Discrepancies (= Bias Measures) between

Two TE-like Scores, and ASAT and an ASAT-like Scores

Run # TEACT/ASAT TEMM/ASAT TEMM/OPTAT

621 6.27 9.26 8.14
622 1.27 1.66 0.06
623 3.62 4.63 2.17
625 12.13 15.73 14.04
626 4.47 6.87 3.28
629 1.13 2.26 1.21
630 4.39 5.68 1.48
632 9.44 12.52 10.77

A second route, consistent with the evidence of Chapter 6 and much more besides (Daley,
1986a), is by raising the extent of traditional system-wide assessment: in other words, rely-
ing much more on some external examinations. This is unpopular with the power-base of the
ACT Schools Authority, being contrary to the principles espoused in the mid-seventies when the
ACT moved away from this time-honoured21 assessment system (cf. P 3). There is also some prac-
tical difficulty in having external examinations in only a portion of the curriculum, as distorted
results may come from different colleges placing more or less emphasis on teaching externally v.
internally examinable material.

A third possibility which has not been investigated22 is the use of an apparently bias-free scale
like ASAT-T in Mathematics scores (or, Mathematics and exact Sciences, with or without Com-
puting; cf. M&B), followed by using an Other Course Score scaling method to produce scores in
all courses much as has been done in Chapter 4 where the scale coefficient of the external refer-
ence scale scores was fixed. To adopt this route, one would first use the approach of Chapter 4 to
find an optimal pre-dictor in terms of (Qi Vi Wi) for (say) Mathematics scores, scale these by a
two-moment bivariate equating method, assuming that the error terms have similar variances, and
finally execute a Method-of-Moment estimation procedure on the various college data sets treating
the scaled Mathematics scores as fixed (so βMath = 1). As a scaling procedure this is far from as
efficient as the one developed earlier.

A fourth possibility noted in Chapter 1 is to increase the weighting of Writing Task scores in
the “Total ASAT” score. This route does nothing to control the annual variability in gender-linked
differences (Conclusion 5.2), and it leads to a reference scale score that is sub-optimal in the sense
of Conclusion 4.2.

CONCLUSION 7.2. ASAT scores, with or without Writing Task scores, are not sufficiently
positively correlated with school-based assessments to justify rescaling course scores or
general achievement measures without considering the necessity for their calibration
to remove the gender-linked discrepancy between them and course scores. Calibrated
scores have higher correlations with school-based scores. Other action to check on
outlier scores may marginally affect the discrepancy measure.

21 The Chinese of c. 2000 B.C. are usually credited with introducing state-run public examinations, for
entry to the civil service.
22 A disturbing feature of some recommendations in MATHEF was that their likely effects could be

studied and predicted using information from both inside and outside the ACT, but even the potential for
such appears not to have been recognized. Some predictions that were given in Daley (1986b) are consistent
with subsequent observations.



CHAPTER 8

Imprecision in Calculating Tertiary Entrance Scores

Scope for Jackknife Studies

Jackknife techniques can be used to study the uncertainty in a student’s TE score arising from
the pooled effect of the other students with whom any given student’s TE score is constructed. As
well as providing quantitative data concerning this aspect of the precision of TE scores, these studies
reinforce previous statements identifying ASAT scores as a more substantial source of imprecision
than the school-based assessments. Theoretical work alluded to in Daley (1985, note 5 on p.245)
is confirmed by the empirical analyses below. For details on resampling techniques including the
jackknife, see e.g. Efron (1982) or Efron & Tibshirani (1986).

Under any Other Course Score scaling procedure, for any given set of parameters (e.g. large
and small group sizes, ASAT weight, adjusting for outlier scores), we can compute the effect on TE
scores of using estimates (aj , bj) of the scaling parameters,

(i) for a fixed given set of ASAT scores, by resampling the course scores;

(ii) for a fixed given set of course scores, by resampling the ASAT scores;

(iii) by resampling both sets of scores.

Having found (aj , bj) for a particular resampled set, TE scores can be found for each student. Under
the ACT’s or Queensland’s existing ASAT scaling procedure, a resampling process analogous to
(iii) can be done; with rather more difficulty, an analogue of (i) could also be devised.

Suppose there are N students in the population. A jackknife estimate of the (error) variance
of the TE score TEi of student i based on the N subsets of N − 1 students consisting of all except
the jth student (j = 1, . . . , N), is given by

(s2JNF)i ≡
N∑

j=1

(TEi − TEi,\j)
2 − 1

N

N∑

j=1

(TEi − TEi,\j)]
2 (8.1)

where TEi,\j denotes the TE score for student i when scores for the jth student are omitted in the
calculation of the scaling parameters.

The one-factor model representation of course and ASAT scores leads directly to the represen-
tation for an individual’s TE score, namely

TEi = 3.6vi + τ + eiT . (8.2)

Here, τ represents the selection effect (“best 3.6 scores”) making a student’s score exceed the one-
factor measure vi (see e.g. Daley, 1985), and eiT denotes model-fit and measurement error. In
both theory and practice, the imprecision in TEi depends on the standardized relative general
achievement/ability measure

ζi ≡ [vi − ave(vi)]/s.d.(vi), (8.3)

(i.e., a “z-score”). Specifically, theory predicts and empirical studies confirm that

(s2JNF)i/(1 + ζ2i ) (8.4)

65
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TABLE 8.1

Jackknife estimates of “imprecision” in a student’s TE score due to

“errors” in other students’ scores in the same scaling group(s)

Run ID #’s SD TE Scores Cse. Scs. ASAT Scs. Both Scs. ASAT Scal.
OCS Scal. ASAT Scal.

(1) (2) (3) (4) (5) (6) (7) (8)

540 501 79.58 82.51 18.2 61.6 76.1 105.1
541 503 79.64 82.52 16.2 58.3 71.5 134.6
542 500 63.28 68.18 17.3 47.0 58.6 105.3
543 512 72.08 68.85 13.5 23.5 34.3 62.9
544 505 74.58 75.64 13.9 33.2 44.6 61.1
545 507 79.84 82.02 16.2 22.5 35.6 46.1
546 504 76.61 79.57 13.5 28.7 39.8 47.4
547 509 72.42 75.78 10.8 16.4 25.3 54.8
548 508 77.07 74.02 17.0 33.3 46.2 81.6
549 506 81.08 79.73 12.9 23.8 35.1 50.9
550 502 71.55 73.72 18.1 22.2 36.9 51.8
551 511 90.54 88.05 26.9 26.0 48.7 94.4
552 510 83.94 89.60 17.4 19.3 34.2 59.0

Notes: The Run ID numbers in (1) refer to columns (3) and (5)–(7), and numbers in (2) to (4) and (8).

The TE Score standard deviations in columns (3) and (4) refer to Other Course Score scaling with Method
of Moment estimators for (3), and 1985-style ASAT scaling for (4).

The jackknife variance estimates in columns (5)–(7) are the mean square statistics as at (8.5) corresponding
to the resampling schemes as at (i)–(iii) respectively. The estimate in (8) is the analogous quantity from
1985-style ASAT scaling.

is much less variable than the unstandardized quantities in the numerators here. As an overall
estimate of the scaling error, we use the mean square statistic, for college k,

(S2
JNF)k ≡ 1

N

N∑

i=1

(s2JNF)i
1 + ζ2i

. (8.5)

Interpretation

We can interpret these mean square statistics at (8.5) as follows. Consider first an “ideal”
student Pat with about an average TE score, so that ζPat ≈ 0.0. Suppose Pat attends the college
from whose data the statistics in the first line of Table 8.1 have been compiled via Method of
Moment estimation in an Other Course Score scaling procedure. Then viewing students’ course
scores as being subject to “error” around their “true score” values, the uncertainty in Pat’s TE
score relative to other students in the same college can be described by a random variable with
zero mean and standard deviation

√
18.2 ≈ 4.3. If the students had received exactly the same

course scores from school but a different ASAT paper used, the uncertainty in Pat’s score is given
by a random variable with standard deviation

√
61.6 ≈ 7.9. When we regard both ASAT and

course scores as being subject to random variation, the uncertainty in Pat’s TE score relative to
other students at other colleges can be described by a random variable with standard deviation√
76.1 ≈ 8.7. Had the 1985 ASAT-style scaling procedure been followed (though, using the 1986

ASAT-T scores incorporating Writing Task scores), the last figure would have been higher still at√
105.1 ≈ 10.2.
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TABLE 8.2

Jackknife estimates of “imprecision” under different variants of

Other Course Score scaling procedure with Method of Moment Estimation

Run ID # Outly. % Av.TE Sc. SD TE Sc. “Imprecision” variance estimates
ASAT Wt. (i) (ii) (iii)

540 0 0.00% –5.174 68.902 15.92 99.28 113.49
2.23% –1.103 76.151 16.08 54.22 68.38

1.5 0.00% –1.966 79.583 18.16 61.63 76.06
2.57% 1.752 85.284 17.13 39.08 53.53

541 0 0.00% 13.853 65.838 12.83 84.36 98.55
4.52% 13.829 69.069 14.52 170.42 184.79

1.5 0.00% 15.774 79.638 16.18 58.25 71.50
6.02% 12.027 83.111 17.86 90.49 103.38

542 0 0.00% 2.377 47.306 14.11 72.85 86.69
2.65% 1.788 47.944 14.44 120.49 137.68

1.5 0.00% 4.661 63.281 17.29 47.04 58.62
3.69% 2.027 62.967 18.52 68.02 81.13

543 0 0.00% –6.996 57.232 12.86 37.16 48.37
4.41% –5.649 62.613 12.52 29.62 42.18

1.5 0.00% –4.441 72.083 13.49 23.55 34.30
5.32% –3.359 74.610 13.78 25.22 37.21

544 0 0.00% 18.159 62.626 10.70 45.23 55.85
3.96% 19.230 64.309 10.65 59.37 70.21

1.5 0.00% 20.702 74.578 13.93 33.23 44.58
4.68% 21.321 74.715 13.53 43.78 55.22

545 0 0.00% 15.486 66.375 11.53 29.31 40.45
5.06% 17.841 67.517 11.85 33.82 45.20

1.5 0.00% 18.076 79.840 16.19 22.51 35.55
5.10% 19.436 78.063 15.27 25.67 38.01

546 0 0.00% 18.823 65.392 10.41 38.26 48.55
1.60% 19.351 65.130 10.49 53.77 64.56

1.5 0.00% 21.086 76.614 13.50 28.68 39.77
1.96% 20.492 76.945 13.89 35.08 46.66

547 0 0.00% 3.685 56.396 9.20 26.84 35.98
5.08% 7.057 57.650 9.32 35.24 44.91

1.5 0.00% 5.470 72.421 10.75 16.44 25.33
5.80% 5.624 73.564 10.61 21.42 30.62

548 0 0.00% 4.689 9.012 15.98 55.67 70.19
6.00% 9.810 1.870 15.98 52.54 67.39

1.5 0.00% 8.139 7.068 17.02 33.34 46.21
.29% 11.318 73.631 16.58 38.29 51.61

549 0 0.00% 12.321 72.744 11.94 27.74 39.82
2.09% 14.001 73.090 12.07 28.42 40.85

1.5 0.00% 13.049 81.083 12.90 23.82 35.06
2.16% 14.186 80.287 13.21 26.10 37.71

550 0 0.00% 28.180 55.625 15.32 31.25 46.51
5.32% 32.737 54.263 15.59 38.01 53.57

1.5 0.00% 31.682 71.549 18.07 22.21 36.87
5.26% 34.768 68.349 18.75 24.83 40.59

(Continued on next page)
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TABLE 8.2 (cont.)

551 0 0.00% 22.575 73.531 24.65 39.55 63.06
7.30% 30.811 69.465 25.54 74.86 98.04

1.5 0.00% 28.147 90.535 26.88 25.97 48.67
8.11% 32.834 89.880 27.24 46.13 69.26

552 0 0.00% 19.299 66.858 14.99 28.92 44.22
7.38% 23.460 71.031 15.10 39.56 55.42

1.5 0.00% 22.446 83.937 17.38 19.32 34.23
8.60% 24.771 85.419 16.78 27.19 42.09

Note: The entries under items (i)–(iii) have been rescaled from the jackknife estimates as computed by
making all figures have the same SD for the TE score as in the third line of entries for each run.

The entries in column (7) are approximately equal to the sum of the entries in columns (5)
and (6). Thus, the two sources of imprecision just considered of uncertainties in course and ASAT
scores, when measured by variances, are additive, as we should expect if they and their effects on
TE scores were independent.

The TE score standard deviations that result from 1985-style ASAT scaling are about the same
or marginally higher than the standard deviations that the Method-of-Moment scaling procedure
gives when, as in this table, ASAT scores are weighted like 1.5 courses in computing the measures
vi used in scaling. The comparison between the imprecisions from the two procedures is only
reasonable because these TE score standard deviations are approximately the same.

If Pat were a student seeking admission to a course with a higher TE score (e.g. Law) the
imprecision would be at least twice the size of the estimates given above. If instead Pat were a
student under the NSW HSC system, these estimated standard deviations would be reduced to
less than 10% of their present values, and only the entries in column (i) would matter. This last
observation helps emphasize that any scaling procedure incorporates an element of imprecision; the
ideal is to make it as small as possible consistent with the principles that underlie the construction
of a TE score.

Table 8.2 lists similar quantities to columns (5)–(7), for the same ASAT-T weighting as in Table
8.1 in the third and fourth lines for each college, for zero ASAT-T weighting in the first two lines,
and with adjustments for outliers being made in lines 2 and 4. The estimates have been rescaled
by making the TE scores have the same standard deviation as in the third line, rather than their
actual values as shown. Such standardization tends to reduce the effect of course score “error”
variation as a result of the weighting of ASAT scores. The reduction in the ASAT component
of variability (comparison of entries in column (ii) for similar outlier % between different ASAT
weights, namely, as a course score weight of either 0 or 1.5), may be attributable not merely to the
addition of ASAT scores to the scaling criterion variable vi, but also to the fact that those course
scores scaled by “small group procedures” have in fact been fixed in consultation and with some
knowledge of both ASAT and scores in other courses, and these “small group scaling procedure”
scores remain fixed (cf. Remark 4.1).

It is possible to test this influence of small group scores by a jackknife study with ASAT
scores rescaled so as to yield TE scores with the present standard deviation, and observe how the
“imprecision” estimates in column (ii) are affected. The three rows in Table 8.3 correspond to the
first three rows of Table 8.2, except that now the ASAT scores have been rescaled by a factor of
1.2 in the first two rows. The observed increases in the scale of the TE scores fell short of this 20%
increase by 0.4 (i.e., 19.6% increase, because 120− 100× 82.379/68.902 = 0.44 ≈ 0.4), 3.0, 4.2, 2.1,
1.5, 0.7, 1.0, 0.5, 0.6, 2.4, 1.9, 0.2, and 0.5 respectively. Comparison of the entries under (i) in Tables
8.3 and 8.2 show slight changes in these jackknife estimates of variance: approximately, 0% change
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TABLE 8.3

Jackknife estimates of “imprecision” with rescaled ASAT scores:

The effect of small group scores

Run ID #’s SD TE Sc. “Imprecision” variance estimates Change from 8.2
Tbl.8.2 This # (i) (ii) (iii) (i) (ii)

540 561 82.379 15.937 99.821 114.034 +0.1% +0.5%
93.666 16.082 52.608 67.077 +0.0% –3.0%
79.583 18.158 61.625 76.056

541 562 77.046 12.591 91.900 105.610 –1.9% +8.9%
89.402 14.676 167.589 181.926 +1.1% –1.7%
79.638 16.176 58.248 71.497

542 563 54.805 13.458 81.377 94.752 –4.6% +11.7%
57.457 13.947 140.689 157.593 –3.4% +16.8%
63.281 17.286 47.036 58.619

543 568 67.459 12.045 39.080 49.767 –6.3% +5.2%
76.339 11.992 43.229 55.515 –4.2% +45.9%
72.083 13.495 23.547 34.301

544 564 74.180 10.270 47.556 57.767 –4.0% +5.1%
80.320 10.379 66.107 76.475 –2.5% +11.3%
74.578 13.933 33.235 44.578

545 569 79.165 11.424 29.859 41.092 –0.9% +1.9%
82.740 11.672 34.518 45.720 –1.5% +2.1%
79.840 16.189 22.511 35.552

546 565 77.820 10.591 39.159 49.782 +1.7% +2.4%
80.314 10.755 50.805 62.400 +2.5% –5.5%
76.614 13.500 28.685 39.771

547 572 67.403 8.806 27.186 35.947 –4.3% +1.3%
75.963 8.872 35.918 44.879 –4.8% +1.9%
72.421 10.754 16.444 25.326

548 566 70.453 15.996 56.277 70.860 +0.1% +1.1%
75.293 16.170 57.412 72.455 +1.2% +9.3%
77.068 17.025 33.336 46.207

549 567 85.522 11.945 29.662 41.802 +0.0% +6.9%
86.948 12.166 32.918 45.689 +0.8% +15.8%
81.083 12.903 23.816 35.062

550 570 65.666 14.597 32.637 47.221 –4.7% +4.4%
65.867 14.675 37.234 51.903 –5.9% –2.0%
71.549 18.075 22.205 36.867

551 571 88.089 24.653 39.788 63.235 0.0% +0.6%
100.954 25.580 75.227 100.474 +0.2% +0.5%
90.535 26.876 25.973 48.674

552 573 79.873 14.567 29.527 44.312 –2.8% +2.1%
92.183 14.692 32.739 48.166 –2.7% –17.2%
83.937 17.384 19.325 34.234

in three cases, 2% increase in a fourth, and reductions of 2%, 4%, 5%, and 6% in the other four
cases. A priori, we should expect a reduction if anything. Also, most entries in (ii) increase. Both
these observations are consistent with the existing procedure placing excessive emphasis on ASAT
scores (“excessive” because the noise in ASAT scores is quite the larger of these two measures).

Theory also predicts that for increasing N , (S2
JNF)k should be O([# course groups]/N), and
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TABLE 8.4

Quasi-invariant quantity (8.6) for jackknife variance estimate

Run # ASAT Wt. = 0 course score ASAT Wt. = 1.5 course score ASAT
(i) (ii) (iii) (i) (ii) (iii) Scal.

540 501 0.0529 0.3299 0.3771 0.0603 0.2048 0.2527 0.3248
0.0534 0.1802 0.2272 0.0569 0.1299 0.1779

541 503 0.0365 0.2400 0.2803 0.0460 0.1657 0.2034 0.3565
0.0413 0.4848 0.5257 0.0508 0.2574 0.2941

542 500 0.0496 0.2561 0.3048 0.0608 0.1654 0.2061 0.3190
0.0508 0.4236 0.4841 0.0651 0.2391 0.2852

543 512 0.0487 0.1408 0.1832 0.0511 0.0892 0.1299 0.2612
0.0474 0.1122 0.1598 0.0522 0.0955 0.1410

544 505 0.0448 0.1893 0.2337 0.0583 0.1391 0.1866 0.2485
0.0446 0.2485 0.2938 0.0566 0.1832 0.2311

545 507 0.0427 0.1086 0.1499 0.0600 0.0834 0.1317 0.1618
0.0439 0.1253 0.1674 0.0566 0.0951 0.1408

546 504 0.0461 0.1694 0.2149 0.0598 0.1270 0.1761 0.1945
0.0464 0.2380 0.2858 0.0615 0.1553 0.2066

547 509 0.0538 0.1568 0.2103 0.0628 0.0961 0.1480 0.2927
0.0545 0.2059 0.2624 0.0620 0.1252 0.1789

548 508 0.0555 0.1932 0.2436 0.0591 0.1157 0.1604 0.3070
0.0555 0.1824 0.2339 0.0576 0.1329 0.1791

549 506 0.0389 0.0903 0.1297 0.0420 0.0775 0.1142 0.1715
0.0393 0.0925 0.1330 0.0430 0.0850 0.1228

550 502 0.0663 0.1352 0.2012 0.0782 0.0961 0.1595 0.2111
0.0674 0.1644 0.2318 0.0811 0.1074 0.1756

551 511 0.0895 0.1435 0.2288 0.0975 0.0942 0.1766 0.3620
0.0927 0.2716 0.3557 0.0988 0.1674 0.2513

552 510 0.0575 0.1109 0.1697 0.0667 0.0741 0.1313 0.1986
0.0579 0.1518 0.2126 0.0644 0.1043 0.1615

also proportional to (1 − [corr(ASAT, TE score)]2) × var(TE score), so a useful statistic to check
this is the quantity

Nk(S
2
JNF)k

(# course groups) · (1− corr(ASAT, TE score)]2) · var(TE score)} . (8.6)

It is tabulated in Table 8.4 for the three resampling schemes listed at (i)–(iii) above and also for
resampling using the 1985-style ASAT scaling procedure. The data shown for this last procedure
should be similar to what would result had the 1986-87 procedure with its use of multiple “common
scales” been used.

In Table23 8.4, and considering columns (i) in particular, comparison with entries in Table 8.2
suggests change from the variability pattern as there, but no obvious systematic pattern of change
emerges. Nor does there appear to be any obvious relation between size of college and any of the

23 In applying (8.6) to compile the entries for Table 8.4, the quantity used for the number of scaling groups
takes no account of the “intermediate” size groups, while for convenience I used data on corr(ASAT, TE
score) from the 1986 Year 12 Study.
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entries shown. The ASAT Scaling method parameters are less variable than the others (0.162 to
0.362), but they are also the largest.

We can summarize the results of both the jackknife studies and the algebraic work concerning
estimates of the scale parameters {βj} as below.

CONCLUSION 8.1. The imprecision in a TE score is affected by choice of scaling proce-
dure. Amongst procedures based on a one-factor model for the data, this imprecision
is least when an Other Course Score procedure is used. The scaling parameters are
model-unbiased when they are estimated by Method-of-Moments.

CONCLUSION 8.2. The major source of computational imprecision in TE score construc-
tion is associated with the use of ASAT scores. This imprecision can be considerably
worsened by using the existing bivariate adjustment approach rather than the more
direct estimation approach in a one-factor model for multivariate data.



CHAPTER 9

The A. C. T. Tertiary Entrance Score:

Background and Prescriptive Structure

The aim of this chapter is to give some background information concerning the ACT TE
score which we call TEACT for the sake of distinguishing it from other actual or putative Tertiary
Admission Indices. Its origins are described in Chapter 2 of MATHEF and are mostly not repeated
here.

In terms of the discussion in Chapters 2–4 above, TEACT is a best 3.6 score aggregate. The
reason for the number 3.6 stems partly from its origins in the NSW HSC score: it was a deliberate
step that 3.6 should represent rather less of a student’s total T-accredited curriculum load than was
then used elsewhere in Australia, a situation that persists except for the aggregate score produced
in Western Australia since 1985.

There are two facets to a Tertiary Admissions Index like the ACT TE score. The first covers
the nature of the data available and the purpose for which the index is to be used: it is mostly this
aspect that we have discussed so far.

The other concerns the prescriptive construction of the index. Such prescriptive decisions can
have consequences in terms of student participation in different parts of the curriculum. For exam-
ple, as a result of the 1986 changes to TE score compilation, there has been reduced participation
at ACT single-sex girls’ schools in those courses whose scores are scaled against ASAT-Q. As far
as I am aware, this reaction is an unintended consequence of the changes introduced then: in terms
of optimising TE scores it is a correct strategy. As another example, confusion over certification
statements concerning particular as against general academic achievements, has altered the nature
of the data now reported on the NSW Higher Schools Certificate and the construction of some
Tertiary Admission Indices there since 1986 (Daley & Eyland, 1987).

CONCLUSION 9.1. The use of ASAT sub-scale scores as in the 1986 ACT scaling proce-
dure for constructing TE scores contravenes Principle P 1.

The Source Data

The primary task perceived in this study concerns scaling procedures on the data as supplied.
Consequently the school-based compilation of course scores from unit scores and operations in
constructing the moderation groups from possibly more than one course, have been largely accepted
without question. Put another way, we have not scrutinized the educational judgments involved
in constructing the numerical summaries of the assessments, but have looked at the structural
properties and processing of the resultant numerical information. This does not mean that it is
not possible to elucidate some information about the properties of different constructions of course
scores from studying the end-products alone, as for example in comparing the change in NSW HSC
procedures in using school-based exam. mark estimates until 1985 and school-based assessments
since 1986 (Daley & Eyland, 1987).

Contrary to the implied thinking of the Supervisory Committee (cf. Chapter 1 Appendix),
no study of a procedure for processing numerical data can be made adequately in isolation from
detailing the structural properties of the data set.

72
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The Existing Scaling Procedure

Unless specific qualification is entailed, the term existing scaling procedure is used as a generic
description of the first- and second-moment ASAT-equating method used in the ACT since 1977.
There have been various modifications effected from time to time; those of which I am aware are
listed at ASATModif. 1–8 below. [Brackets identify brief comments.]

ASATModif. 1. A truncation procedure ensuring a maximum TE score of 360 “marks” (= 3.6×100
“marks”) was used only in 1977.

ASATModif. 2. Neither ASAT nor course scores of “mature age” (MA) students are used in
determining the parameters used in the scaling procedure. [The operational definition of “mature
age” is questionable: in both 1986 and 1987 several students aged 21 years or more at 31 December
1986 were not classified as being of mature age.]

ASATModif. 3. Neither ASAT nor course scores of students of non-English speaking background
(NESB) are used in determining the parameters used in the scaling procedure. [The definition
and identification of NESB students has slowly evolved, but still does not appear to be applied
uniformly for all colleges.]

ASATModif. 4. Up until c. 1983 a student’s ASAT Total score ASAT−T was determined by the
number of correct items scored. Since then, it has been subject to some psychometric control in
its construction [supposedly] so as to give equal weightings to the scores of the sub-tests which in
terms of their face validity measure relative Quantitative and Verbal skills. [(i) Constructing the
sub-scale scores entails a statistical procedure. (ii) Because of the different measurement errors in
these two sub-tests, with a larger error in the Verbal sub-test where also there are usually fewer
items (cf. Conclusion 5.1), the resulting ASAT-T is slightly biased towards the Quantitative sub-
scale. (iii) Because of the relative numbers of items in these two areas, the gender-linked difference
in ASAT-T scores has been reduced slightly by use of the post-1984 definition. (iv) It is also the
case that sometimes there are items on the ASAT paper which are not classified as being in either
sub-test, and under this later definition such items have been discarded from the construction of
ASAT-T which thereby acquires a larger measurement error than is necessary.]

ASATModif. 5. Onwards from 1985, ASAT scores have been reported publicly on a scale with mean
150 and standard deviation 25, replacing the 1977–84 parameter values of (65, 15) . This change is
purely cosmetic: an exact linear relation exists between TE scores on the pre- and post-1985 scales:

(post-1985 TE scale score) = 540 + (5/3) × (pre-1985 TE scale score – 234)

= 150 + (5/3) × (pre-1985 TE scale score). (9.1)

ASATModif. 6. Onwards from 1986 a Writing Task was introduced and its scores AWR combined24

with ASAT Verbal sub-scale scores to produce an ACT Verbal score. ASAT-T was then defined as
equally weighted combinations of ASAT Quantitative sub-scale scores and ACT Verbal scores. [The
major consequence of this change was to produce scores with a 10 to 20% smaller gender-linked
bias between ASAT and TE scores than occurred previously, this being consistent with predictions
based on evidence of the mode-of-assessment effect (cf. Daley, 1986a, b).]

ASATModif. 7. Onwards from 1986, not one but three reference scales have been used [supposedly]
to provide a common scale for all courses: ASAT-T , -Q and ACT Verbal scores have been used

24 In 1986, ACT Verbal was formed by rescaling a 70 : 30 mixture of ASAT-V and AWR to a standard
deviation of 25.0. In 1987 and 1988 a 50 : 50 mixture was used.
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for different courses, depending on a prescriptive decision regarding the content of the courses
concerned. [The change was argued partly because it reduces the error mean square between the
course and reference scale scores. It introduces a bias relative to the assumption of using a common
scale implied in the construction of an aggregate score, because the courses using sub-scale scores are
those attracting students with relatively higher competence in the related Quantitative or Verbal
skill areas, so their mean sub-scale scores are higher than the scores of the common ASAT Total
scale, and a selection bias effect ensues. The same comment would apply to the use of several
reference scales as considered in Morgan & McGaw (1988). What all this bears out is M&B’s
remark quoted at the start of Chapter 2.]

ASATModif. 8. From time to time there have been problems associated with producing course
scores in moderation groups where the numbers are “small”. In the ACT the critical size for
“small” has varied, generally between 5 and 10. On the other hand the size of intermediate groups
has not changed at all.

Moderation Group Assumptions

In the analyses done for this study, three group sizes are of significance for the procedures
adopted:

Standard Group: If the number of scores in the group is at least 20 then both first and second
moments are scaled.

Small Group: If the number of scores in the group is smaller than 10 then the course scores
are unchanged.

Intermediate Group: If the number of scores in the group lies in the range ≥ 10 and < 20 then
the first moment is scaled statistically but the second moment is left unchanged.

The strategy for Intermediate Groups was adopted as a necessary expediency because the second
moment in the data as supplied to me had already been subject to non-statistically based rescaling
in accordance with the existing procedure; to attempt an analogue for an Other Course Score
procedure in the absence of the original college-based data involved too much inversion at the time
of programme development.

Our initial Method-of-Moment scaling operations were carried out on college data sets complete
apart from omitting ASAT scores of students classified as NESB. This was a change from the existing
procedure in that we used course scores of NESB students in constructing the within-college scaled
scores. The change is more consistent than the existing procedure with the principle P 2 that
comparative teachers’ judgments are to be preserved. There was an oversight in not eliminating
MA students from this scaling step, due to insufficient information about the MA indicator variable
in the data as supplied. The oversight involved both the inappropriate use of ASAT scores of some
MA students (cf. ASATModif. 2) and an improper construction of MA students’ TE scores from
rather fewer course scores than the regulation “best 3.6 scores”. This oversight has subsequently
been corrected so that in all analyses done for this report, the course scores used for scaling are
those of the students in each college with a full TE package (≥ 3.6 course units) and aged < 21
on 31 December 1986. The ASAT scores of NESB and MA students are excluded. This exclusion,
the definition of Group sizes, and the use of linear transformations as rescaling devices, agree with
current practice.

Structure of TE Scores and Other Course Score Scaling Criteria

A student’s curriculum in the ACT is made up of at least 30 units of study (an average student
seeking a TE score has a load of about 6 units per term under the three-term year format). These
units must be sufficiently related so as to make up at least three (or four) major and three (or one)
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minor courses, with at least three major and one minor courses “Tertiary Accredited”. In practice,
about 7% of students with a TE package have only the minimum number of T-accredited courses;
all other students have at least a fourth major or two minor courses in their curriculum (see Table
9.1). Indeed, the mean number of T-accredited courses per student is around 5.0 courses for all
ACT colleges (see Table 9.2).

TABLE 9.2

Mean Numbers of TE-Course Units per Student

College Mean No. Units

cop 4.82
dck 4.86
ern 4.73
hwk 5.03
nar 5.01
phl 4.87
str 5.17
dar 4.88
edm 4.93
mar 5.19
cce 5.15
mer 5.08
stc 5.61

Some Possible Abuses

It is an assumption of almost all scaling procedures used in Australia that, across their chosen
courses, students will exert approximate “parity of effort”, though this may vary between student.
One is obliged to suspect that when the signal to noise ratio of scaled course scores in a college falls
below about 2.0 more obvious departures from this assumption are being reflected. This reflection,
like the gender-linked bias between TE and ASAT scores, lowers the correlation between TE and
ASAT scores. How do various scaling procedures reflect this departure from assumed behaviour?

Under the existing system, there appears to be no penalty for students, especially the more
able, to take on an extra course (even if only a minor) but not treat it so seriously. A college tends
to gain an advantage from this behaviour because scaled scores in such “extra” courses are likely to
be students’ lower scores, and hence lower than the scaling variables, whether ASAT or an averaged
Other Course Score. As a result, the mean scaled scores of other students in the group are then
inflated.

Under an Other Course Score scaling procedure, reference scores like ASAT scores, provided
they are “valid for scaling” (i.e., not NESB or MA) are used just once for all students. This
means that the ranking of students in the college as a whole is not inflated by more frequent use
of higher ASAT scores. Amongst Other Course Score procedures, there can be inflation effects for
some courses relative to the model-unbiased estimates of scale parameters {βj} associated with
Method-of-Moment estimation. In the presence of smaller or larger numbers of students with
“uneven” curriculum effort (cf. the previous paragraph), this optimal scaling procedure can act so
as to depress slightly or more markedly all scale parameters, so that it partly compensates for the
inflation effect that occurs otherwise.

Another approach to this problem of coping with an incorrect assumption involving “ethical”
behaviour, is to construct the aggregate from a considerably larger part of a student’s load. Most
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Australian systems do just that. In NSW for example, apart from MA students covered by special
provisions, at least 10 and often 11 Units of NSW HSC study are required (roughly speaking, five
majors and one minor in ACT terminology). Excluding MA students, 95% of the candidature meet
this eligibility requirement, and for them, 7% offer 10 units, 52% 11 Units, 37% 12 Units, and
less than 4% 13 or more Units. In WA where the number of courses required for an aggregate
was reduced c. 1985 (and, reduced slightly more than the ACT’s 3.6 course score requirement, but
with an additional requirement of including both a quantitative and a humanities course score),
there have been responses from students indicating course selection behaviour that is not totally
in accord with the explicit and implicit “behavioural” assumptions of those specifying the new
aggregate score.

Since all scaling procedures assume that every T-accredited course score should be reckoned
according to its weight, so the procedures will be more or less efficacious according as students
behave consistently with the “parity of effort” assumption.

CONCLUSION 9.2. Consideration should be given to redefining a TE score as the sum of
a student’s best 4.5 course scores, conditional on the inclusion of at least three Major
course scores, where a Minor course has a weight of 0.5 instead of 0.6, and where a
Total ASAT Score made as an optimal mixture of Quantitative and Verbal sub-scales
and the Writing Task, is regarded as a Minor course score and can be included in this
“best 4.5 aggregate”.

Prescriptive Actions and ASAT Scores

It can hardly be stressed too strongly that the construction of any Tertiary Admissions Index
like the Tertiary Entrance score is governed predominantly by the nature of the data involved.
In particular, it is in general more difficult to change the nature of Tertiary Entrance scores by
prescriptive measures concerning ASAT scores, such as were tried onwards from 1979 following on
from Morgan’s (1979) analyses of 1978 data demonstrating the gender-linked bias in ASAT scores
relative to TE scores.

Further, what is observed in the ACT is little different from what is observed elsewhere amongst
students of similar age in other English-speaking countries (I have not looked at literature concern-
ing non-English speaking countries). Thus, the changes that were observed in ACT TE scores as
a result of the modifications to their construction between 1985 and 1986 were largely predictable,
except25 possibly for the relative scores of students from Government and non-Government schools
on
the Writing Task and the ASAT verbal sub-test (cf. Table 6.5 and Conclusion 6.4). In partic-
ular, it was both predictable and predicted that these changes would not go nearly far enough to
eliminate the gender-linked bias in ASAT scores.

25 From conversation with some individuals who have had contact with students who have completed
Year 12 under the ACT system, the observed effect is not entirely unexpected. To what extent the effect
would survive after reduction of the contrast factor between ASAT and course scores is conjectural at the
time of writing.



CHAPTER 10

Some A. C. T. Course Score Analyses

The fact that any “score equating” or scaling procedure is justifiable only to the extent that
data comply with positivity assumptions like those of Chapter 2 or else conform to a statistical
model as in Chapter 3 implies that both the procedures and the data should be examined in relation
to the model. As a compromise between this fact and the Supervisory Committee’s rejection of
item (i) of the Appendix to Chapter 1, this Chapter merely sketches some data analyses that
firstly vindicate the preference for an Other Course Score scaling procedure over the existing ASAT
scaling procedure. They also indicate, as has been observed with other data sets of secondary
school students seeking a tertiary admission qualification, that a two-dimensional structure may
provide an adequate description of the data set.

The analyses reported here are comprehensive in the sense of including what analyses have
been done, but not in the sense of covering all courses or all colleges.

Three-factor Structure

In terms of the models developed in Chapter 3, one obvious starting point from which to
consider the structure of the data set is with the c. 90% or more of the TE students of a college
with both English and Mathematics scores. For this sub-population, confined slightly further by
excluding NESB and MA students (and this exclusion applies throughout any discussion of ASAT
scores), each student i has the two course scores denoted Ei and Mi, and the three scores on the
ASAT Quantitative and Verbal sub-tests and the Writing Task Qi, Vi and Wi. These five scores
are independently obtained observations that are regarded as reflecting student i’s school-based
achievements in two “distinct” course areas and developed abilities or skills in (broadly speaking)
similar areas.

In Chapter 6 we indicated analyses on these scores omitting {Wi} supporting a three-factor
representation involving a general ability cum achievement measure vi, a quantitative/verbal con-
trast, and a mode of assessment contrast. These analyses can be amplified by the correlation
matrices and 4- and 5- factor analyses listed in Table 10.1. In particular, we concluded earlier that
there exists for each student i a systematic difference between the school-based general
achievement measure vi + ∆i and the external ASAT-determined general measure of
developed ability vi −∆i.

What do we learn now from the analyses summarized in Table 10.1 of the data sets {(Ei, Mi, Vi,
Qi)} and {(Ei, Mi, Vi, Qi, Wi)} ? First, all the correlations in (a) are positive. Next, the smallest
tend to be associated with either Wi or Vi, consistent with their having the largest measurement
errors of the five quantities. Perhaps surprisingly, corr(E, M) is rather smaller than corr(V, Q).
Since both pairs contrast quantitative and verbal skills, interpret this as showing that the contrast
∆i of Chapter 6 originates more in ASAT than school-based assessment. Also, corr(W, E) is rather
larger than corr(V, E): this underlines that the skills on which ASAT-V draws are more distinct
than those used by E and W .

From table (b) giving the latent roots, we conclude that at least two but no more than three
factors are discernible. The first factor, whether in (c) or (d), corresponds to the general achieve-
ment cum ability factor discussed in Chapters 2–4. Note that the English scores load least strongly
of the four components. The second factor in (c) is predominantly a contrast between Q and E,

78
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TABLE 10.1

Correlations, Latent Roots, and Factor Loadings of

Q, V, W, E and M Scores in 1986 within the 13 ACT Colleges

(a) Correlations

College Q/V Q/W V/W Q/E V/E W/E Q/M V/M W/M E/M

1 0.577 0.215 0.336 0.292 0.385 0.450 0.689 0.472 0.231 0.481
2 0.667 0.279 0.346 0.458 0.503 0.476 0.784 0.577 0.270 0.561
3 0.483 0.243 0.367 0.320 0.414 0.601 0.646 0.326 0.311 0.529
4 0.550 0.355 0.416 0.280 0.300 0.521 0.722 0.378 0.277 0.478
5 0.656 0.368 0.432 0.279 0.419 0.527 0.700 0.511 0.418 0.473
6 0.689 0.329 0.420 0.447 0.510 0.581 0.673 0.441 0.343 0.491
7 0.634 0.111 0.385 0.252 0.453 0.599 0.644 0.388 0.217 0.400
8 0.634 0.292 0.356 0.316 0.458 0.573 0.645 0.472 0.265 0.503
9 0.679 0.426 0.356 0.576 0.601 0.471 0.639 0.397 0.239 0.604
a 0.652 0.489 0.368 0.561 0.576 0.674 0.646 0.436 0.433 0.643
b 0.659 0.210 0.338 0.538 0.606 0.576 0.745 0.607 0.177 0.510
c 0.712 0.460 0.483 0.380 0.523 0.628 0.678 0.586 0.423 0.631
d 0.677 0.313 0.290 0.530 0.555 0.468 0.706 0.484 0.290 0.608

(b) Latent roots of 4- and 5-component correlation matrices

1 2.467 0.740 0.543 0.250 2.680 0.987 0.615 0.471 0.247
2 2.787 0.588 0.441 0.185 3.013 0.901 0.488 0.415 0.183
3 2.368 0.686 0.694* 0.252 2.704 0.954 0.690 0.409 0.242
4 2.382 0.787 0.623 0.208 2.722 0.932 0.721 0.434 0.191
5 2.542 0.755 0.491 0.212 2.925 0.886 0.516 0.461 0.212
6 2.632 0.596 0.558 0.213 2.980 0.853 0.558 0.396 0.213
7 2.402 0.781 0.605 0.212 2.649 1.165 0.606 0.372 0.208
8 2.523 0.706 0.526 0.244 2.818 0.966 0.562 0.432 0.222
9 2.752 0.429 0.605 0.213 3.031 0.783 0.581 0.414 0.191
a 2.759 0.431 0.577* 0.234 3.202 0.702 0.546 0.369 0.180
b 2.837 0.552 0.362 0.249 3.040 1.023 0.377 0.311 0.249
c 2.763 0.655 0.391 0.191 3.207 0.770 0.510 0.351 0.161
d 2.783 0.480 0.529* 0.208 3.012 0.837 0.522 0.425 0.202

* For the sake of demonstrating common structure of the second and third factors, and to maintain
correspondence with the table of factor loadings, the eigenvalues here are not in descending order.

with any alignment of M and V being more with Q than E. The third factor is a contrast between
V and M , as is hardly surprising in view of the second, with no discernible patterns of alignment
of the other two quantities. Coupled with our analyses of Chapter 6, what these imply is that a
quantitative/verbal contrast makes two appearances, and is here confounded with a mode of as-
sessment contrast. (Note that in 4 of the 13 colleges, we have identified the second factor with the
factor loadings of the third largest latent root.)

Turning to table (d), the second factor is now unashamedly a contrast between Q and M on
the one hand (with maybe a little help from V ), and E and W on the other. The third factor
is a contrast between V (with weak support from Q) and M generally supported by E, while W
flips between the external multiple-choice measures and the school-based measures. We interpret
these two factors as contrasts of quantitative/verbal domains and multiple choice/school-based
assessments respectively.
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TABLE 10.1 (cont.)

(c) Factor loadings in analyses of correlation matrices of Q, V , E, M

College First factor Second factor Third factor

Q V E M Q V E M Q V E M

1 0.838 0.777 0.652 0.858 0.399 0.159 –0.745 0.033 0.157 –0.595 –0.025 0.405
2 0.885 0.824 0.736 0.885 0.332 0.118 –0.671 0.117 0.126 –0.545 0.029 0.357
3 0.811 0.704 0.724 0.831 0.387 0.377 –0.604 –0.171 0.321 –0.582 –0.276 0.420*
4 0.860 0.714 0.626 0.861 0.319 0.369 –0.735 –0.091 0.250 –0.584 –0.235 0.405
5 0.853 0.820 0.639 0.855 0.404 0.128 –0.758 0.041 0.075 –0.530 –0.025 0.452
6 0.878 0.818 0.738 0.805 0.340 0.020 –0.659 0.213 –0.073 –0.527 0.112 0.513
7 0.844 0.807 0.639 0.793 0.428 –0.058 –0.744 0.203 –0.086 –0.543 0.138 0.532
8 0.833 0.812 0.691 0.832 0.439 0.149 –0.701 –0.002 0.072 –0.522 –0.067 0.494
9 0.878 0.807 0.839 0.792 0.383 0.016 –0.520 0.110 –0.064 –0.535 0.055 0.559*
a 0.864 0.798 0.837 0.821 0.402 –0.099 –0.482 0.164 –0.119 –0.549 0.176 0.479*
b 0.880 0.854 0.777 0.854 0.283 –0.134 –0.570 0.360 0.038 –0.494 0.268 0.211
c 0.842 0.853 0.748 0.875 0.444 0.229 –0.627 –0.114 0.132 –0.430 –0.139 0.411
d 0.880 0.812 0.801 0.842 0.330 –0.174 –0.501 0.300 –0.155 –0.521 0.304 0.376*

*See footnote to table of eigenvalues (= latent roots) at (b).

(d) Factor loadings in analyses of correlation matrices of Q, V , W , E, M

First factor

Q V W E M

1 0.792 0.771 0.554 0.696 0.817
2 0.853 0.814 0.554 0.766 0.854
3 0.736 0.694 0.674 0.787 0.779
4 0.812 0.715 0.674 0.681 0.795
5 0.805 0.799 0.700 0.684 0.825
6 0.828 0.802 0.670 0.781 0.770
7 0.750 0.803 0.601 0.733 0.738
8 0.785 0.790 0.632 0.751 0.783
9 0.869 0.794 0.606 0.845 0.751
a 0.841 0.756 0.735 0.868 0.794
b 0.841 0.845 0.530 0.825 0.811
c 0.813 0.831 0.735 0.785 0.836
d 0.856 0.792 0.556 0.821 0.819

Second factor Third factor

Q V W E M Q V W E M

1 0.453 0.116 –0.700 –0.436 0.297 0.110 0.433 0.303 –0.473 –0.317
2 0.351 0.129 –0.760 –0.310 0.297 0.141 0.332 0.262 –0.510 –0.171
3 0.560 0.056 –0.607 –0.391 0.340 0.030 0.686 –0.011 –0.207 –0.420
4 0.462 0.129 –0.562 –0.522 0.337 0.017 0.579 0.249 –0.382 –0.422
6 0.433 0.149 –0.633 –0.379 0.315 0.081 0.527 0.003 –0.128 –0.508
7 0.567 0.095 –0.685 –0.485 0.360 0.108 0.535 0.024 –0.190 –0.521
8 0.461 0.198 –0.646 –0.457 0.297 0.142 0.433 0.212 –0.282 –0.480
9 0.131 0.004 –0.746 –0.010 0.457 0.127 0.566 –0.230 –0.125 –0.419
a 0.299 0.459 –0.583 –0.243 0.051 –0.064 0.408 0.221 0.041 –0.570
b 0.353 0.092 –0.789 –0.335 0.393 –0.125 0.500 –0.149 0.005 –0.300
c 0.460 0.266 –0.490 –0.471 0.161 0.166 0.200 0.404 –0.295 –0.439
d 0.284 0.217 –0.794 –0.181 0.213 0.041 0.531 0.067 –0.138 –0.464
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Two-factor Structure of Course Scores

Having indicated the nature of much, if not most, of the information available in course and
ASAT scores, it would now be proper to consider the nature of information available in course
scores alone. In this report we simply outline some ad hoc analyses done in order to understand
the relevance or otherwise of the representation at equation (3.14), namely that student i’s scaled
course score Yij in subject j is expressible as

Yij = vi1 + γjvi2 + e′ij . (10.1)

As an aside that we do not follow up here, there are at least two simple-minded independent
estimators of the factor vi2 that we could consider: subject to suitable scaling of the scores, for
most students we could use either or both of Qi − Vi and Mi − Ei.

Our major aim here is to consider a variety of linear predictors using various combinations
of the five scores in {(Ei, Mi, Vi, Qi, Wi)}. This is equivalent to studying linear regressions in
terms of these variables for each set of course scores. Since the set of course scores is constant for
each of these regressions, comparisons of different regressors within sets can be effected by noting
the proportion of unexplained variance (i.e., in the jargon of multivariate analysis, the quantity
100 × (1−R2)%), and this is what is listed in Table 10.2. The following generalizations are made
on the basis of the various analyses summarized in this table:

(a) Use of the estimator 1
2 (Vi − Qi) of vi2 in conjunction with Ti ≡ 1

2 (Vi + Qi) tends to add
little explanatory power except for Mathematics course scores. This is not to say that no quantita-
tive/verbal contrast factor vi2 is discernible, because using the course score estimator 1

2 (Ei −Mi)
of vi2 in conjunction with the analogue 1

2 (Ei +Mi) of Ti leads to somewhat increased explanatory
power in several cases. The problem with the ASAT sub-scale scores is probably tied in with both
the size of their measurement and model-fit errors and the presence of the factor ∆i.

(b) The set {(Ei, Mi)}, or even just {1
2 (Ei +Mi)}, is generally markedly superior to the set {(Vi,

Qi, Wi)}, entailing much more than the reduction in unexplained variability that has been seen so
far in coming from any estimate of the contrast factor vi2. The better performance of {(Ei, Mi)}
is again understandable in terms of the presence of the factor {∆i} in the latter set but not the
former in relation to sets of other course scores, and of the relative sizes of measurement errors.

(c) The Other Course Score estimators {vi} at (3.9) mostly have lower unexplained variance
(equivalently, higher correlation: see Year 12 Study) than even a best-fitting linear combination of
{(Ei, Mi)}. This reflects the decreased measurement and model-fit error in vi relative to the pair
(Ei, Mi).

(d) To the extent that it is relevant, the contrast factor vi2 is not as well estimated by either or both
of the pairs (Vi, Qi), (Ei, Mi) as the general measure vi+γ′

i|vi2|. Accordingly, the estimation of e.g.
General Quantitative and Verbal skills by estimators of vi ± vi2 almost certainly entails appreciable
loss of precision over estimation of a general achievement measure. Rather careful predictive validity
studies are needed to check on the relative worth of any aggregates as predictors. Educationally,
the use of more than one aggregate conflicts with P 1.

(e) In spite of having larger measurement errors and cruder lattice span imprecision than the
ASAT scores, the set of scores {Wi} provides increased explanatory power, though not to the same
extent as using course scores. In general the scores Wi replace and add to whatever contribution
comes from Vi, but this is hardly surprising!

From the tables of correlation coefficients in Tables 12 of the annual Year 12 Study publications
of the ACT Schools Accrediting Agency, we can make allowance for the inclusion of some course
scores in TE scores and thereby deduce that
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TABLE 10.2

Various Linear Regressors Compared as Predictors of

Course Scores via Unexplained Variance

College and Course T {V, Q} {V,Q,W} (E+M) {E, M}
A English 51.6% 49.1% 40.2% {ACV, M}: 40.0% {V, Q, M}: 39.4%

{V,Q,W,M}: 33.1%
A Mathematics 62.0% 57.8% 56.5% Q: 58.3% {Q, E}: 46.8%

{V,Q,W,E}: 45.1%
A Physical Science 34.8% 34.8% 31.3% 13.3% 12.1%
A Biological Sci. 82.5% 82.1% 61.3% 38.3% 38.3%
A Humanities (i) 51.4% 50.7% 44.3% 45.8% 37.5%
A Humanities (ii) 67.8% 64.0% 51.4% 37.2% 28.9%

B Physics 74.0% 73.0% 72.0% 43.7% 42.7%
B Chemistry 56.5% 52.3% 49.0% 42.1% 30.1%
B Biological Sci. 65.0% 64.9% 62.5% 43.0% 43.0%
B Computing 84.6% 84.1% 81.1% 50.2% 48.2%
B Drama 68.1% 67.6% 52.9% 38.7% 30.9%

C Mathematics 43.8% 37.6% 37.5% Q: 38.4% {Q, E}: 33.0%
D Mathematics 67.8% 58.8% 58.8% Q: 59.1% {Q, E}: 50.9%

{E+M, V,Q,W}
E Drama 97.1% c.96% 91.5% 80.1% 79.0% 72.3%
E Biological Sci. 65.3% 64.7% 61.2% 56.4% 55.1% 47.1%
E Social Sci. 68.2% 66.0% 58.6% 33.1% 33.1% 28.5%
E History 74.3% 74.2% 74.1% 34.9% 31.3% 33.8%
E Art 77.3% 75.1% 55.4% 48.1% 36.7% 38.7%

Code for scores: V, Q = ASAT sub-scale, W = Writing Task. T = 1
2 (V + Q). ACV = ACT Verbal

= 0.7V + 0.3W. E = English, M = Mathematics, E + M = analogue of T.

corr(TE score, course score) > corr(ASAT score, course score).

We have also checked more extensive analyses of 1984 data along the lines of Table 5.2 of MATHEF.
These three sets of overlapping analyses are mutually consistent.

CONCLUSION 10.1. Other Course Score scaling procedures have considerably smaller er-
ror mean squares than ASAT scaling procedures, and are therefore in general superior
procedures.

Since parameter unbiasedness is a desirable property, this in turn points to using a procedure
having at the very least the model-unbiasedness properties of the Method-of-Moment estimators
of the scaling parameters (cf. Daley, 1987a, 1988). The empirical work that has been sketched in
this section also supports the implications of this algebraic work and the conclusions of Chapters 2
and 3: no matter what higher dimensional sub-space may be common to course scores as distinct
from any “uniqueness” factors, approximate unbiasedness of estimation of the dominant general
achievement measure comes from using the Method-of-Moment estimation procedure.

§5.9 of MATHEF quotes p.100 of M&B that “the correlations of the Australian Scholastic
Aptitude Test with some course scores are clearly too low to justify current attempts to bring these
scores to a common scale using the Aptitude Test as a reference test” (i.e., rejection of A 5). Table
10.2 bears that out (and here we ignore the fallacy of a common scale for multivariate data set:
see the discussion below (4.29)). Tables 10.2 and 10.1 and Chapter 6 identify the ASAT scores as
a source of a multidimensional problem that is irrelevant to a discussion of course scores. At the
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very least they make highly questionable M&B’s contention that “the obvious multidimensionality
of the course [scores] renders invalid any attempt to summarize student performance in a single
score”, because the most obvious source of deviation from unidimensionality that emerges from
Table 10.2 is the ASAT scores which explain less of the variability than the Other Course Scores.

ASAT scores no longer have any place as such in the ACT Tertiary Entrance Statement. Their
role has always been ancillary to the school-based assessments under the ACT guidelines, supposedly
providing merely system-wide estimates of developed academic ability for use in constructing group
estimators (recall A 5). It follows that any deviation between the measures of developed academic
ability (or whatever ASAT scores measure) and relative academic achievement as determined by
school-based assessments, should be identified so soon as it is seen as a cause of problems in
producing any Tertiary Admissions Index. Such problems occurred directly in the 1977 query
about the gender-linked bias and indirectly in the relatively low correlation even with aggregates of
course scores. Chapter 6 and Tables 10.1–2 establish the existence of the contrast factor ∆i. There
is an urgent need to reduce its influence.



CHAPTER 11

An Optimally Constructed A C T Tertiary Entrance Score

This Chapter details the numerical steps needed to produce a TE score in the ACT start-
ing from a set of course scores X and using the Optimal Other Course Score Scaling Procedure
(colloquially, “Method-of-Moment” scaling). Focus attention for the moment on one college and
write

X = {Xij : i = 1, . . . , N ; j in set Si of courses where i has scores},
W = {wij : weight of course j for student i},

where each non-zero wij takes one of the values 0.6, 1.0, 1.6, 2.0, according as the course score is
a Minor, Major, Major-Minor, or Double Major. (Strictly, for ACT use at present, our use of the
symbol j is ambiguous, sometimes denoting a course and sometimes a moderation group, because
it is possible for a student to have more than one course score in the same moderation group, as
for example English and Media Studies when the latter school-based scores are put in the English
moderation group.) Depending on the number Nj of scores in group j, its set of school-based scores
is treated by small group scaling procedure (I have followed 1986 ACT practice and taken Nj ≤ 9
for this), intermediate group procedure (10 ≤ Nj ≤ 19), or standard group procedure (Nj ≥ 20).

For a small group, scores are determined by a consultation process that includes reference to
ASAT scores and other course scores; no automated scaling procedure is involved. This means that
for j in a small group, scaled scores Yij are determined before and independently of any statistical
scaling procedure.

For the other groups, an automated procedure is employed, with slightly different details for
intermediate and standard groups so far as estimates of the scale factors βj are concerned. For the
moment regard all groups as either standard or small. The aim of the exercise is to find estimators
(aj , bj) of the scaling parameters (αj , βj) and construct the scaled scores

Yij = aj + bjXij . (11.1)

An iterative procedure is employed. Use a superscript as in a
(n)
j to denote values at the nth

step. For convenience, and it is desirable but not essential, start with scores in X that have a
common mean and standard deviation, (150, 25) say, for each moderation group. Write Si for the
set of groups where i has scores Xij (equivalently, those j for which wij > 0), and Cj for the set of
individuals with scores in group j (when individuals have more than one score in group j, they are
counted for as many scores as they have in group j). Start from

(a
(0)
j , b

(0)
j ) = (0, 1). (11.2)

For n = 0, 1, . . . and i = 1, . . . , N construct

v
(n)
i =

∑
j in Si

wij(a
(n)
j + b

(n)
j Xij)∑

j in Si
wij

. (11.3)
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For j in moderation groups at the given college, excluding small groups but including group 0 (see
below (11.6)), define

avej(v
(n)
i ) ≡

∑
i in Cj

wijv
(n)
i∑

i in Cj
wij

, (11.4)

varj(v
(n)
i ) ≡

∑
i in Cj

wij(v
(n)
i − avej(v

(n)
i ))2

∑
i in Cj

wij
, (11.5)

covj(Xij , v
(n)
i ) ≡

∑
i in Cj

wijXij(v
(n)
i − avej(v

(n)
i ))

∑
i in Cj

wij
, (11.6)

where the reference scale scores and associated weights are designated as group 0 (these weights
will typically be either 0 for NESB and MA students, and some positive constant otherwise: use
wi0 = 0.000001, say, for reference scale weight of 0). Define for the moment

b
(n+1)
0 =

var0(v
(n)
i )

cov0(Xi0, v
(n)
i )

(11.7)

and then for j 6= 0 and not a small or intermediate group, set

b
(n+1)
j =

1

b
(n+1)
0

· varj(v
(n)
i )

covj(Xij , v
(n)
i )

(11.7)

(if j is a small or intermediate group, b
(n)
j = 1.0 for all n). Now reset

b
(n+1)
0 = 1. (11.9)

Compute avej(Xij) and varj(Xij) analogously to (11.4) and (11.5) (in practice, this is done once
and for all at the outset). Momentarily set

a
(n+1)
0 = ave0(v

(n)
i )− ave0(Xi0), (11.10)

in order to determine for j 6= 0 and not in a small group,26

a
(n+1)
j = avej(v

(n)
i )− b

(n+1)
j avej(Xij) + a

(n+1)
0 . (11.11)

Now reset
a
(n+1)
0 = 0. (11.12)

The system of equations from (11.3) onwards can now be iterated until convergence is at-
tained. This will typically take up to 10 or 12 iterations for convergence of the intermediate values

(a
(n+1)
0 , b

(n+1)
0 ) to their putative values (0, 1). The eventual proximity of these values to (0, 1) is a

measure of the success of a scaling procedure (recall from the discussion preceding Conclusion 2.3
that for a balanced data set X , convergence to (0, 1) would be attained: in practice the data set is
not balanced, and we have instead a statistical model as in Chapter 3).

26 The original has – instead of + for the term a
(n+1)
0 .
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It remains to fix suitable weights {wi0} for the reference scale scores. In this report I have
always used wi0 = 0 for Mature Age or NESB students; understand in the sequel that these
exceptions have been made. In some analyses in this report I have used wi0 = 1.5 because this
value yields Tertiary Entrance scores TEMM with about the same variance as the existing TE
scores TEACT. After doing several of these analyses, I changed to using wi0 = 0.8 as being closer
to what substitution in equation (4.29) yields for ACT data, coupled with rescaling of the ASAT
scores by a factor 110/103(= 110/(95 + 10 × 0.8)) because this preserves to within 1 or 2% the
existing TE score variance in the scores TEMM; this is desirable on account of the Small Group
scaling procedures (see discussion preceding (4.21)).

A third parameter should be used to reduce the effect of outlier scores (see the end of Chapter
4). Finally, the ASAT reference scale scores should be subjected to a gender-linked calibration to
eliminate the sex-bias effect. This done, the process should be iterated, but unlike the two or three
iterations required of the calibration procedure sketched in MATHEF, I should expect one iteration
here to suffice because the effects on TE scores of gender-linked changes to ASAT scores are now
one step more remote from those ASAT scores than under the existing scaling procedure.

CONCLUSION 11.1. On the basis of what is presently known, there are four steps required
to construct a TE score as fairly as possible via a set of linear transformations of school-
based scores, consistent with the Basic Assumptions and Principles for Constructing
TE scores:

(1) Determination of scaling parameters via Method-of-Moment estimation using
Other Course Scores as the basis of the scaling criterion variables, in conjunc-
tion with (2)–(4) below.

(2) Removal of the gender-linked bias in ASAT scores.

(3) Reduction of the effects of outlier scores (this may overlap with (1)).

(4) Fixing suitable weights for ASAT- (or whatever-) based reference scale scores
in relation to non-statistically determined course scores, as for example with small
groups.

I have not detailed here the analogous formulae to be followed for intermediate size moderation
groups, as I have not had the raw school-based data from which to work. Briefly, what is involved
is to determine the scale parameters by OptOCSP and use this as a component of a mixture as
ASAT scores are presently used for such groups.



CHAPTER 12

Some Comparisons of Three Scaling Procedures

via TE Scores and other Parameters

The aim of this Chapter is to illustrate some consequences of using different scaling procedures.
We start by giving three sets of “Tertiary Entrance Scores” denoted TEACT, TASAT and TEMM.
They are constructed from course scores obtained from three different scaling procedures. We give
examples of the different rankings that come from using these different TE scores, and illustrate
ways of summarizing such information. The scaling procedures differ in the scaling parameters
they produce for the various moderation groups. We list these sets of parameters coming from the
various colleges classified according to the “course areas” of the scores in the moderation groups.
The only systematic differences that emerge between the procedures and that are linked to the
different areas, are explicable in terms of the properties of the procedures that are known a priori:
we find no other evidence of systematic effects being introduced via the Optimal Other Course
Score Scaling Procedure (OptOCSP).

Some Examples of Different TE Scores

TEACT, TASAT and TEMM result respectively from applying the 1986 scaling procedure
using ASAT Total and sub-scale scores, from the 1985 scaling procedure using just ASAT-T scores,
and from OptOCSP discussed in Chapters 3, 4 and 11 using Method-of-Moment estimation with
ASAT weighting factor WTAS = 0.8 and a rescaling factor on ASAT-T scores of 110/103 to
maintain approximately the same standard deviation of TE scores as for TEACT or TASAT.

Table 12.1 lists the three scores for all students with just the minimum number of course scores
needed to construct a TE score, i.e., 3.6 units. To lessen the identifiability of particular students’
scores, the three scores for each student have been adjusted by an integer between –9 and +9,
allocated randomly to each set of scores as listed.

Table 12.2 is similar to Table 12.1 except that now the entries are grouped by college and are
of students with a common number of units. Their scores cover most of the range of TE scores,
and have been shifted as before to lessen identifiability.

These tables show that changes in TE scores of up to 20 or 30 points can come simply from
changing the scaling procedure (e.g., in Table 12.1, students with TEACT scores in the range 500
to 504 have TASAT scores from 485.8 to 505.4, and TEMM scores from 476.8 to 532.8). These
larger changes are not the norm, but they are far from uncommon. What are the effects of these
changes on student rankings?
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TABLE 12.1

Sets of 1986 (TE)ACT Scores, (T)ASAT-Scaled Scores, and

Method-of-Moment (TE)MM Scores: All Students with 3.6 Units

ACT ASAT MM ACT ASAT MM ACT ASAT MM ACT ASAT MM

353 353.4 368.5 355 353.2 362.1 357 350.4 367.0 367 364.9 383.7

371 369.5 391.1 379 373.4 356.2 379 374.7 359.3 381 365.6 385.1

386 372.8 338.7 390 390.7 396.7 393 388.9 404.0 395 393.1 406.3

396 391.3 392.0 397 393.4 395.8 402 392.7 404.4 402 414.4 414.7

406 404.1 407.0 407 400.1 409.2 411 396.2 410.6 413 410.5 415.3

414 403.0 430.4 416 417.5 443.4 416 419.0 421.6 418 411.0 417.6

420 419.9 427.5 420 420.0 419.7 421 420.0 424.2 421 420.7 427.8

423 413.5 394.1 423 418.2 432.8 423 420.1 427.8 424 423.3 428.6

426 419.4 427.8 427 424.8 432.5 430 419.4 437.5 434 434.0 437.2

435 424.3 435.9 435 432.6 432.1 435 432.9 433.9 435 434.8 439.5

436 427.7 430.6 436 429.4 432.3 437 435.0 445.2 440 437.6 443.7

441 434.0 432.2 443 436.8 438.3 444 425.2 428.3 444 452.5 460.4

445 435.6 434.7 447 435.8 436.2 447 442.8 454.7 448 435.0 458.9

450 436.9 446.5 450 443.8 449.6 450 445.7 448.1 450 446.8 448.8

451 444.5 446.4 451 449.5 458.0 451 450.3 445.2 452 451.5 457.1

453 447.7 456.7 455 453.6 461.7 455 453.9 446.3 455 455.1 458.3

457 455.1 458.3 458 457.6 459.1 459 455.4 466.7 459 456.1 461.4

461 452.0 453.2 461 457.1 459.5 462 455.2 462.6 462 461.7 464.4

463 449.9 455.4 463 453.2 453.9 463 457.3 468.9 468 465.0 466.3

469 460.4 463.3 469 465.4 466.9 469 466.2 479.2 469 467.3 471.1

470 465.3 472.3 471 463.0 459.3 473 464.8 468.0 473 471.7 477.4

473 472.2 470.0 473 474.0 477.4 473 474.2 485.3 474 470.0 462.4

474 470.8 471.7 475 476.1 479.3 477 470.9 470.4 477 478.4 477.5

478 475.0 484.7 481 479.5 496.7 481 481.6 489.8 482 480.5 484.9

483 480.6 484.0 484 474.6 464.8 484 477.4 476.3 484 481.5 484.4

485 481.9 487.6 486 480.1 486.8 486 484.6 488.5 487 478.0 477.4

487 484.4 483.3 488 483.6 481.1 490 484.4 493.0 490 488.3 488.1

490 488.4 490.0 491 479.9 475.3 491 489.1 492.0 491 489.9 495.4

494 482.3 510.2 494 491.4 496.4 495 493.7 497.2 496 493.3 486.8

496 497.0 492.0 497 494.4 499.0 497 495.2 497.6 499 496.0 496.2

499 496.6 497.6 500 488.7 489.6 500 500.6 508.1 501 485.8 476.8

502 494.8 492.1 502 499.7 495.6 502 502.7 500.9 503 490.4 486.8

504 505.4 532.8 505 502.1 498.0 507 503.3 505.9 508 498.0 497.2

511 511.0 517.3 512 502.2 504.4 517 507.0 504.2 518 510.9 510.4

519 515.1 505.8 522 514.0 517.9 522 518.5 526.5 522 522.2 530.1

527 514.2 525.9 528 527.2 529.5 529 522.2 516.6 531 520.6 523.2

531 526.7 532.0 531 527.0 532.9 533 534.0 530.5 535 526.2 521.6

538 541.0 546.1 539 536.1 533.7 541 540.7 547.8 546 520.7 518.6

546 544.9 547.5 550 545.7 550.5 551 547.1 548.2 554 546.0 546.5

564 562.7 554.3 566 559.1 571.9 567 565.5 566.4 576 572.5 569.4

578 571.0 572.2 581 577.8 573.4 581 580.5 606.6 583 578.0 575.7

600 595.4 601.4 603 598.3 598.5
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TABLE 12.2

Sets of TE Scores:

Students with the Same Number of Units Grouped by College

ACT ASAT MM ACT ASAT MM ACT ASAT MM ACT ASAT MM

College A

438 431.8 436.8 445 440.5 424.4 479 454.5 454.3 479 467.4 483.0
485 473.6 483.2 500 492.7 484.8 503 497.0 504.7 513 503.6 512.4
520 493.7 498.7 532 526.0 521.7 532 526.1 531.4 534 524.8 540.5
536 531.4 528.1 542 535.7 539.6 545 539.7 555.8 548 535.8 538.6
554 541.0 553.0 556 545.9 548.1 556 547.8 543.1 559 555.0 560.2
560 556.0 550.0 564 561.4 556.6 575 570.4 571.2 577 568.1 574.9
590 582.7 579.5 593 591.6 596.7 595 589.3 584.7 596 590.3 603.7
601 596.8 610.9 609 604.1 621.4 613 610.2 615.9 619 616.1 621.2
620 619.0 616.7 643 639.1 641.0 644 641.2 646.4 647 643.4 645.9
649 641.2 656.4 651 646.6 653.6 654 647.5 654.2 663 661.0 668.1
680 675.3 681.4 698 694.9 699.2

College B

415 405.9 430.9 417 422.5 427.3 485 476.9 480.9 490 489.6 493.6
493 492.3 487.4 493 494.6 497.6 505 504.3 505.9 509 505.8 506.6
511 504.9 503.1 520 507.8 503.0 520 519.6 521.2 527 519.9 519.6
532 521.0 520.8 532 526.6 528.3 540 537.4 533.4 544 533.5 531.0
550 533.5 529.9 550 533.8 527.2 552 549.4 549.6 555 547.4 549.3
558 542.7 536.6 562 558.9 556.8 569 565.9 561.2 570 560.3 558.7
571 569.3 566.7 579 569.4 564.1 579 574.6 574.2 591 580.5 575.8
592 587.1 584.1 598 595.7 597.2 600 591.4 585.5 602 596.0 585.9
606 596.6 591.4 613 608.9 606.0 617 611.9 609.7 617 613.3 611.0
619 612.9 613.7 630 619.6 614.5 630 626.2 626.6 634 625.7 620.7
635 631.8 629.8 644 637.1 631.8 668 661.6 654.9 694 687.3 677.2
697 694.0 685.6 697 695.7 680.5 714 710.0 700.6

College C

334 330.6 335.4 367 365.1 377.1 432 426.8 433.5 437 430.8 444.4
453 448.7 457.9 457 452.6 459.8 465 459.2 464.7 471 449.9 431.3
483 476.1 485.7 485 482.9 491.6 487 484.0 495.5 491 487.8 495.8
491 488.0 495.9 493 490.9 489.6 505 490.9 488.5 507 500.6 505.6
510 501.5 504.0 521 514.0 513.2 525 519.5 524.8 535 533.3 536.1
538 536.5 540.7 539 533.1 530.5 542 538.0 537.4 542 539.6 540.5
551 546.3 554.3 551 546.4 557.0 554 550.2 554.3 555 551.2 556.8
556 554.3 557.1 557 553.5 557.8 557 553.5 561.9 558 555.8 553.0
560 556.7 561.5 560 557.9 565.4 561 556.4 565.3 563 557.7 556.8
564 560.9 562.0 565 558.9 545.9 565 561.7 565.9 570 562.3 552.7
570 566.7 571.2 571 566.1 566.9 573 562.1 551.9 575 568.0 558.4
575 570.9 581.9 578 575.7 576.1 580 574.2 569.5 580 578.3 582.8
581 570.6 562.7 582 580.6 573.1 583 581.2 584.1 586 582.9 574.2
586 584.7 582.6 591 582.4 576.9 594 589.4 582.8 608 603.5 601.7
613 609.0 594.7 624 619.4 606.8 627 625.1 616.0 632 629.9 633.7
641 639.3 634.4 653 653.8 650.2 654 653.6 642.1 662 663.3 650.9
668 666.1 671.1 674 676.9 666.0 675 673.7 690.4 676 679.4 669.3
681 682.7 669.3 698 696.3 712.0 699 698.5 696.4 715 720.5 715.0
725 723.2 728.1
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TABLE 12.2 (cont.)

College D

481 478.1 482.9 497 489.1 488.6 508 501.6 499.6 525 522.9 529.6
526 521.9 517.8 526 523.5 521.5 529 514.1 516.2 531 529.3 542.6
538 530.6 538.0 543 540.8 538.0 552 533.4 537.1 561 549.6 553.8
563 550.0 557.1 565 561.9 561.3 568 564.0 557.4 570 569.5 582.0
574 571.4 566.4 576 573.7 581.2 583 567.2 572.5 583 573.0 575.8
585 570.6 572.6 599 586.9 589.2 599 592.8 603.0 600 592.4 594.8
603 595.0 587.9 603 603.5 602.8 611 610.8 602.2 612 601.1 603.8
614 608.5 613.5 616 615.4 606.7 621 620.2 621.1 622 621.8 637.2
626 618.8 616.7 628 617.6 617.8 638 626.9 626.0 648 641.2 638.4
648 648.0 652.6 651 643.6 643.3 657 654.0 643.8 659 655.2 647.3
659 655.5 650.0 672 665.0 659.9 678 670.6 669.6 680 673.5 669.7
680 675.1 671.2 681 675.1 671.3 686 678.5 673.4 699 691.1 684.6

College E

485 484.0 480.6 505 492.0 481.6 519 493.0 477.3 533 530.9 534.8
540 542.0 541.5 556 555.5 551.4 562 564.1 558.6 581 579.5 582.9
606 595.2 584.6 617 603.5 595.4

College F

463 461.5 473.1 465 460.8 467.6 472 470.0 470.2 489 472.9 464.9
521 519.3 516.5 524 516.2 514.7 541 539.3 543.3 559 559.5 552.8
562 555.2 553.2 565 557.0 546.0 575 571.4 568.1 581 563.2 552.5
586 577.2 566.8 586 578.7 579.7 586 580.9 574.4 589 592.7 586.8
598 582.6 575.1 599 584.5 577.7 600 593.8 590.2 610 614.2 604.1
618 605.0 592.6 625 615.8 610.0 641 626.1 618.9 657 647.5 640.8
680 683.4 669.6

College G

424 420.7 413.7 425 422.1 406.8 426 423.4 416.6 430 427.4 438.6
434 431.0 439.5 451 452.1 438.4 455 453.0 446.8 466 463.3 451.2
466 463.3 463.8 468 465.6 470.9 472 471.0 474.7 473 470.5 458.8
480 474.7 482.1 481 478.2 484.7 483 472.6 484.2 483 485.5 490.8
492 487.4 493.0 492 488.0 480.5 496 483.1 494.8 498 489.4 478.2
506 501.1 491.4 507 503.3 522.8 517 515.2 522.5 519 520.8 521.6
519 522.1 526.8 524 526.9 516.6 527 530.0 530.4 531 530.5 531.8
534 519.2 529.4 535 530.7 528.3 535 534.3 537.9 538 534.6 531.4
538 540.6 539.1 540 539.9 535.2 543 542.8 546.9 547 550.2 535.5
550 548.0 533.7 554 554.1 554.3 558 555.2 542.5 562 558.2 560.8
565 563.1 556.5 565 567.2 572.3 573 559.8 568.7 573 574.1 573.8
574 575.1 567.8 578 578.2 580.7 580 577.7 583.5 582 568.4 576.9
587 585.4 582.1 590 590.5 579.4 597 597.7 611.4 597 600.5 593.4
600 599.0 598.0 603 599.7 606.7 604 602.9 596.2 618 618.2 617.7
622 627.4 619.6 626 625.2 642.2 632 633.4 624.5 634 638.8 628.1
637 635.0 619.3 642 640.1 631.8 643 639.2 633.6 657 660.7 645.5
660 649.2 649.6 668 665.9 649.7 676 675.0 659.9 689 687.3 677.7

College H

465 430.7 426.7 492 479.4 483.5 544 532.1 533.5 549 526.9 517.4
550 547.8 545.1 576 554.7 543.8 579 562.5 553.2 590 593.9 603.3
592 588.8 596.1 606 608.3 606.0 612 605.9 604.5 618 604.5 595.5
622 618.6 603.2 625 613.3 608.3
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TABLE 12.2 (cont.)

College I

425 419.1 414.0 465 462.8 463.0 487 471.0 463.4 488 480.0 480.5
495 492.6 502.9 505 503.1 501.3 507 501.5 494.6 508 484.8 478.0
511 508.5 512.4 516 512.7 516.4 518 505.6 495.6 519 494.6 482.2
520 513.8 507.3 520 515.1 515.0 539 537.1 546.6 559 548.2 542.7
564 561.7 559.0 567 563.4 568.7 570 560.7 559.3 573 569.8 564.5
575 568.6 559.8 585 582.1 580.3 592 589.6 600.3 594 582.9 575.1
599 595.2 592.9 655 653.7 642.6

College J

511 508.2 503.7 513 517.8 516.3 516 509.6 516.7 517 525.4 519.7
522 535.2 525.3 560 556.3 561.4 564 575.9 577.6 607 598.4 599.8

College K

410 400.2 400.9 425 416.3 402.0 426 428.6 421.5 472 464.2 463.4
472 486.9 476.9 479 481.4 481.0 488 493.5 490.2 510 513.4 506.3
570 579.2 572.1 585 581.8 577.0 606 624.4 619.3 608 607.0 610.3

College L

461 456.5 457.3 519 507.2 508.6 540 539.4 537.8 564 547.7 546.9

College M

448 447.1 451.7 458 455.4 461.0 471 470.1 485.7 487 484.6 488.4
499 497.8 494.0 510 508.7 508.9 521 513.7 507.7 527 525.8 524.7
534 533.0 530.8 543 538.7 546.2 547 545.4 546.1 550 549.2 541.0
550 550.5 546.8 552 549.2 555.3 556 555.5 550.1 561 557.4 554.4
568 567.5 567.7 570 570.2 569.8 579 578.8 571.1 588 587.8 580.6
590 591.2 591.8 592 592.5 587.6 593 594.0 590.5 601 600.9 599.8
601 601.0 603.9 603 604.3 591.7 605 604.5 601.6 610 611.3 603.8
616 615.8 619.5 619 618.2 619.4 623 623.5 616.1 630 630.8 629.4
641 640.9 629.9 663 665.9 665.5 669 669.2 664.6 669 669.3 667.7
669 671.3 672.0

Rankings from Different TE Scores

We show the effects of the changes on students with scores at the other end of the scale from
Table 12.1. Table 12.3 is a 3-in-1 table: the three sets of three columns correspond to the top
99 students ranked according to the criteria TEACT, TASAT, and TEMM respectively. Each set
of columns gives the rankings according to TEACT (column 1), TASAT (column 2) and TEMM
respectively.

The first 99 students ranked by any criterion constitute about the top 4% of students. Depend-
ing on what is taken as the base, so the set of students included in the top 99 changes. For example,
if we take TASAT as the base set of scores, corresponding more or less to the 1985 TE scores, then
the use of sub-scales as in 1986 to yield TEACT scores would mean exchanging 2 students in the
top 9, or else 6 students in the top 99. If instead OptOCSP is used so as to yield TEMM scores,
then 1 student in the top 9, or 10 students in the top 99, would be changed. Finally, the use of
TEMM rather than TEACT (or vice versa), would lead to 2 students in the top 9, or 14 in the top
99, being affected by the change.

The arguments developed in this report point to the use of a single reference scale (hence, to
TASAT or TEMM), and to Other Course Score scaling (hence, to TEMM), so the implication of
the sizes of these changes is that TEACT is an even shoddier scale than TASAT relative to TEMM.
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TABLE 12.3

Students’ TE Score Rankings from Different Scaling Procedures

Ranking by: TEACT TASAT TEMM

TEACT TASAT TEMM TEACT TASAT TEMM TEACT TASAT TEMM
Rankings Rankings Rankings

1 1 2 1 1 2 2 2 1
2 2 1 2 2 1 1 1 2
3 3 3 3 3 3 3 3 3
4 5 4 5 4 6 4 5 4
5 4 6 4 5 4 22 6 5
6 22 30 22 6 5 5 4 6
7 24 33 8 7 8 10 12 7
8 7 8 9 8 9 8 7 8
9 8 9 19 9 23 9 8 9

10 12 7 16 10 10 16 10 10
11 13 14 17 11 11 17 11 11
12 16 13 10 12 7 18 14 12
13 17 19 11 13 14 12 16 13
14 21 21 18 14 12 11 13 14
15 25 34 23 15 31 25 23 15
16 10 10 12 16 13 24 19 16
17 11 11 13 17 19 55 46 17
18 14 12 27 18 20 44 30 18
19 9 23 24 19 16 13 17 19
20 20 25 20 20 25 27 18 20
21 27 26 14 21 21 14 21 21
22 6 5 6 22 30 32 29 22
23 15 31 25 23 15 19 9 23
24 19 16 7 24 33 29 34 24
25 23 15 15 25 34 20 20 25
26 43 47 34 26 36 21 27 26
27 18 20 21 27 26 30 49 27
28 28 29 28 28 29 35 41 28
29 34 24 32 29 22 28 28 29
30 49 27 44 30 18 6 22 30
31 33 40 39 31 38 23 15 31
32 29 22 52 32 48 33 47 32
33 47 32 31 33 40 7 24 33
34 26 36 29 34 24 15 25 34
35 41 28 57 35 56 43 38 35
36 54 52 63 36 54 34 26 36
37 51 55 58 37 58 49 45 37
38 52 41 43 38 35 39 31 38
39 31 38 41 39 51 117 115 39
40 50 43 45 40 46 31 33 40
41 39 51 35 41 28 38 52 41
42 62 63 53 42 49 48 44 42
43 38 35 26 43 47 40 50 43
44 30 18 48 44 42 94 69 44
45 40 46 49 45 37 76 78 45
46 55 82 55 46 17 45 40 46
47 58 57 33 47 32 26 43 47
48 44 42 66 48 66 52 32 48
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TABLE 12.3 (cont.)

TEACT TASAT TEMM TEACT TASAT TEMM TEACT TASAT TEMM

49 45 37 30 49 27 53 42 49
50 68 65 40 50 43 51 53 50
51 53 50 37 51 55 41 39 51
52 32 48 38 52 41 36 54 52
53 42 49 51 53 50 110 83 53
54 64 64 36 54 52 63 36 54
55 46 17 46 55 82 37 51 55
56 74 73 74 56 78 57 35 56
57 35 56 64 57 60 47 58 57
58 37 58 47 58 57 58 37 58
59 63 72 81 59 80 82 72 59
60 66 69 65 60 70 64 57 60
61 67 62 68 61 79 102 108 61
62 80 77 42 62 63 61 67 62
63 36 54 59 63 72 42 62 63
64 57 60 54 64 64 54 64 64
65 60 70 69 65 83 50 68 65
66 48 66 60 66 69 66 48 66
67 88 95 61 67 62 90 82 67
68 61 79 50 68 65 75 77 68
69 65 83 94 69 44 60 66 69
70 84 81 89 70 101 65 60 70
71 95 89 95 71 91 118 81 71
72 98 92 82 72 59 59 63 72
73 113 143 96 73 102 56 74 73
74 56 78 56 74 73 142 133 74
75 77 68 83 75 94 111 85 75
76 78 45 97 76 106 92 96 76
77 87 103 75 77 68 62 80 77
78 89 98 76 78 45 74 56 78
79 101 110 98 79 111 68 61 79
80 99 105 62 80 77 81 59 80
81 59 80 118 81 71 70 84 81
82 72 59 90 82 67 46 55 82
83 75 94 110 83 53 69 65 83
84 110 104 70 84 81 85 86 84
85 86 84 111 85 75 146 158 85
86 90 86 85 86 84 86 90 86
87 92 126 77 87 103 101 100 87
88 93 149 67 88 95 185 202 88
89 70 101 78 89 98 71 95 89
90 82 67 86 90 86 168 169 90
91 104 114 119 91 124 95 71 91
92 96 76 87 92 126 72 98 92
93 124 117 88 93 149 126 146 93
94 69 44 104 94 122 83 75 94
95 71 91 71 95 89 67 88 95
96 73 102 92 96 76 128 97 96
97 76 106 128 97 96 107 143 97
98 79 111 72 98 92 78 89 98
99 107 147 80 99 105 143 157 99
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TABLE 12.4

Amended Rankings from Changing TE Scores

Top Proportion: 50% 20% 10% 4%

(a) Amended Student Rankings

Increase
5 points 47.8% 18.5% 9.1% 3.5%
15 points 43.4% 15.6% 7.4% 2.8%
25 points 39.0% 13.2% 5.9% 2.1%

(b) Approximate Proportionate Change in Group

3 points 1.1% 1.9% 2.3% 2.9%
5 points 1.8% 3.1% 3.9% 4.8%
7 points 2.5% 4.3% 5.5% 6.7%
9 points 3.2% 5.6% 7.0% 8.6%

11 points 3.9% 6.8% 8.6% 10.5%

(c) Proportionate Change of Group from Bias

Bias from “True”
5 points 4.4% 7.6% 8.8% 11.4%

15 points 13.2% 21.2% 26.2% 31.0%
25 points 21.9% 34.2% 40.5% 46.8%

Further, recall that none of these procedures involves removal of the gender-linked bias: we should
expect the ultimate changes to be even higher still (cf. Conclusion 11.1).

CONCLUSION 12.1. The use of a particular scaling procedure can have considerable influ-
ence on the set of students meeting a TE score based selection criterion, particularly in
the more selective groups. In comparison with the OptOCSP, the 1986–88 procedure
is most noticeably discrepant, even before the removal of the gender-linked bias.

Another way of illustrating the effects of the changes is to use distributional properties and
differences of pairs of TE scores. It is sufficient for these purposes to approximate the distribution
by a normal distribution (the use of an arbitrary distribution is sketched in Daley, 1987a). Suppose
that the scores TEMM and TEACT have the same means and standard deviations, with the latter
equal to 90. What is the effect on a student’s ranking of a difference in the two TE scores of 5 or
15 or 25 points? Table 12.427 shows the amended rankings at different points in the range; note
that if the standard deviation is smaller than 90 then the effects as shown would be greater still.

Part (a) of the table is easily interpreted: a student ranked at 50.0% of all students and whose
score increases 15 points under a different scaling procedure, would move up the rankings to 43.4%.
This part of the table can also be read inversely. The shift in rankings upwards of 11% such as
occurred between 1976 and 1977 (see Table 7.1), is equivalent to a TE score change in 1986 TE
scale points of about 25 points or more.

Part (b) of the table uses the standard deviation of TE score changes as an average measure
of the change, and lists the expected proportion of any “top group” that would be affected by
the TE score changes. Table 12.7 lists these standard deviations for the colleges for the three
pairs of TE scores being considered here. Since the size of the ACT TE score population is about

27 Equation (12.1) and the entries in Table 12.4(b) are corrected from the original which used 2.15 in

(12.1) instead of 0.861 = 2.15/
√
2π .
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TABLE 12.5

Sex Bias Measures from Different Scaling Procedures

College Discrepancy between ASAT-T and Standard Errors

TEACT TASAT TEMM TEACT TASAT TEMM

COP 22.57 27.76 31.60 9.94 10.05 10.11
DAR 4.56 3.84 4.85 10.23 10.26 10.30
DCK 13.04 15.50 17.49 8.32 8.33 8.37
ERN 43.69 51.64 58.51 13.40 13.32 13.74
HWK 16.08 17.07 23.63 9.21 9.36 9.41
NAR 4.06 4.36 7.47 8.90 9.07 9.38
PHL 15.78 18.43 19.96 9.72 9.79 9.77
STR 34.04 37.03 43.72 11.77 11.87 11.97
Weighted Mean 18.98 22.57

2,400, the group of “top 99” students corresponds roughly to the top 4%, so the data 6/99, 10/99
and 14/99 deduced from Table 12.3 correspond to entries in Table 12.4(b). To determine the SD
entries, take the median values of the standard deviations from Table 12.7, namely 5.9, 6.4 and 9.0,
giving expected proportions of about 14%, 15% and 21% respectively. While the data point to the
possibility of overestimation (and this is likely, in view of the nature of the changes in the different
colleges), they are of the correct order of magnitude.

The entries for part (b) are computed from an approximation in Daley (1987a). Express
the standard deviation between for example TEMM and TEACT scores as a fraction σ of their
standard deviation 90 (say). Now ask what proportion of students in the top 100p% we can expect
to be changed as a result of using one selection criterion rather than the other. Making normal
distribution assumptions (these are not necessary: see Daley, 1987a), what corresponds for example
to “14/99” ≈ 0.14, is approximately

σ√
2π

· ϕ
(
Φ−1(1− p)

)

p

∣∣∣∣
p=.04

=
σ√
2π

· ϕ
(
Φ−1(1− 0.04))

0.04
= 0.861σ (12.1)

where Φ and ϕ denote the normal distribution function and its density.

Part (c) describes how the composition of a group of eligible students is affected by similar
shifts for a (small) sub-group of students, and in particular therefore, by shifts that are biases like
the gender-linked bias that holds in the ACT and Queensland. For example, if there is a gender-
linked bias that depresses TE scores at a single-sex girls’ school by 15 points, that school can expect
to have about 31% fewer students meeting the cutoff level to a tertiary course where only students
with scores in the top 4% ranking are eligible.

Note that what is listed as “Bias from true” in Table 12.4(c) corresponds to half the bias
measure as listed in Table 12.5, or c. 1.8 times the discrepancies listed in Table 7.4. (In the
standardized notation used in equation (7.1), “Bias from True”/90 = b.) The sex bias measures
in Table 12.5 between ASAT-T and each of TASAT and TEMM are conceptual analogues of the
quantities in Daley (1985); they become numerically analogous, and on the same scale as there,
on division by (5/3) × 3.6 = 6. The measures between TEACT and ASAT-T are not conceptually
analogous: the ASAT-T measure must be replaced by a mixture of ASAT-T , -Q and ACT Verbal
(ACV) scores so as to reflect the bias in each of these three scales relative to the course scores
(cf. Table 6.3). Since ASAT-T would be replaced more often by -Q than by ACV, this would
generally tend to increase the measures shown. In other words, the TEACT/ASAT discrepancy
underestimates the bias measure required for calibration.
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TABLE 12.6

Means and Standard Deviations of TE Scores from Different Scaling Procedures

College Means Standard Deviations
TEACT TASAT TEMM ASAT TEACT TASAT TEMM ASAT

(a) Students with TE Package (Mature Age excluded)

COP 540.37 535.59 533.94 511.54 77.23 75.82 71.93 92.68
DAR 558.92 558.40 558.16 541.75 80.36 82.47 80.11 90.76
DCK 551.41 546.10 545.44 523.36 77.85 76.77 73.29 90.81
ERN 553.51 547.36 544.12 521.74 67.31 67.03 63.64 85.53
HWK 567.06 563.60 563.84 537.45 86.58 89.08 84.83 100.94
NAR 571.32 566.97 568.07 522.98 86.72 91.70 90.47 110.37
PHL 576.49 572.22 572.48 553.73 73.94 73.70 70.22 85.96
STR 554.24 549.02 547.68 526.11 76.57 78.96 77.02 91.43
CCE 563.07 562.36 560.95 540.79 73.79 76.26 74.92 86.62
MER 537.40 539.27 536.55 508.88 78.92 82.95 81.17 86.06
STC 555.39 554.08 553.50 535.75 80.53 81.40 82.91 86.09
EDM 561.67 556.62 555.85 533.34 82.16 83.99 79.51 96.44
MAR 566.65 561.79 561.46 543.17 79.89 79.46 77.45 85.65

(b) Students with TE Package (Mature Age and NESB excluded)

COP 541.12 536.62 535.22 520.72 77.50 76.05 72.13 85.72
DAR 559.60 559.10 558.85 542.54 80.15 82.24 79.86 90.55
DCK 558.12 552.78 552.00 536.81 77.01 75.93 72.37 84.05
ERN 553.88 548.19 544.77 532.93 69.07 68.58 65.19 83.06
HWK 568.10 564.73 565.17 545.81 87.16 89.74 85.66 97.95
NAR 569.28 564.90 565.95 542.01 84.22 88.23 88.60 99.93
PHL 577.47 573.27 573.50 557.07 74.22 73.90 70.36 84.43
STR 560.33 555.28 553.94 534.82 72.02 74.31 72.32 87.70
CCE 565.71 564.86 563.48 546.13 73.50 75.97 74.49 86.65
MER 531.27 531.81 529.75 515.98 80.19 83.19 81.84 87.38
STC 561.49 559.39 559.12 540.66 78.81 80.06 81.90 86.00
EDM 563.87 559.64 558.53 542.88 81.75 83.10 78.65 92.55
MAR 567.79 563.06 562.70 545.45 80.40 79.90 77.87 85.41

Moments of Different TE Score Distributions

Table 12.6 lists the means and standard deviations of the three TE scores we have considered for
each of the ACT colleges, and Table 12.7 lists the means and standard deviations of the differences
of the three pairs of scores (the first three columns of Table 12.6(a) yield the Mean entries in Table
12.7). We see immediately from Table 12.7, or else the second and third columns of Table 12.6,
that, excluding DAR College, the use of sub-scale scores in the 1986 scaling procedure relative
to the 1985 procedure resulted in a gender-linked shift, with mean TE scores remaining roughly
constant at the single-sex girls’ schools while all other schools saw a general upwards shift of about
4 points, as predicted in Daley (1986b).

These effects can be traced to selection effects associated with using sub-scale scores and to the
more frequent use of ASAT-Q scores for males (taking Mathematics, Physics and Chemistry) than
of ASAT-V scores for females (mostly, just English). To see this, take Mathematics for example.
Relative to ASAT-T scores, the ASAT-Q scores of Mathematics students will tend to be higher
(lower) for the students who are stronger (weaker) in Mathematics. The stronger students tend to
take Mathematics at a level with a higher unit count than other students, so the weighted mean
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TABLE 12.7

Means and Standard Deviations of Differences of “TE” Scores

Students with the Same Number of Units Grouped by College

Means Standard Deviations
(1) – (3) (1) – (2) (2) – (3) (1) – (3) (1) – (2) (2) – (3)

COP 6.425 4.782 1.643 10.991 5.904 6.331
DAR 0.762 0.516 0.246 5.211 2.668 5.251
DCK 5.976 5.313 0.662 9.009 4.688 6.383
ERN 9.397 6.153 3.244 13.327 6.574 9.741
HWK 3.224 3.462 –0.238 8.851 4.413 8.544
NAR 3.258 4.355 –1.097 10.017 6.980 10.603
PHL 4.014 4.274 –0.260 7.364 4.354 5.866
STR 6.560 5.220 1.340 10.078 5.121 7.407
CCE 2.114 0.703 1.411 9.092 5.260 8.051
MER 0.857 –1.870 2.727 7.194 9.871 5.189
STC 1.885 1.308 0.577 8.783 7.860 5.741
EDM 5.823 5.058 0.765 12.882 7.175 8.992
MAR 5.182 4.851 0.330 7.144 6.841 3.313

Code: (1) = TEACT, (2) = TASAT, (3) = TEMM.

ASAT-Q score of all Mathematics students is higher than their mean ASAT-T score. The same is
true in Physics and Chemistry which were also scaled against ASAT-Q in 1986.

According to folklore, the students opting for a curriculum with a larger component of Mathe-
matics, Physics and Chemistry, are regarded as having TE scores possibly higher than they ought.
Yet, the effects of the changes28 instituted in 1986 were to make these scores on average higher still.
Moreover, the changes depressed the mean TE scores at single-sex girls’ schools where it was also
agreed that the TE scores if anything were lower than should be the case.

This selection effect serves to emphasize one of the flaws of using more than one reference scale
as absolute rather than relative scaling devices. It is an immediate consequence that a group of
students will collectively maximize their TE scores when each student chooses courses which are
scaled against the reference scale with his/her highest reference scale score. Thus, on average, under
the 1986 scaling scheme, more males should tend to choose Mathematics, Physics and Chemistry,
and females should tend to choose English and Drama. Adoption of the latter strategy, in the sense
of girls at single-sex schools tending to move out of Mathematics, Physics and Chemistry courses,
has been observed by staff at those schools.

I can only infer that it was presumed that using a series of reference scales, each with the same
mean and standard deviation, should provide a satisfactory basis for scaling. Yet, such is not the
case, nor is it consistent with how scores are treated in New South Wales for example. There,
public examination marks in different courses do double service, as assessments and as reference
scale scores for scaling school-based assessments in those courses. What corresponds to our data set
X is the set of averages in each course of the exam. mark and the scaled school-based assessment.
It is this analogue that is scaled via an Other Course Score procedure, and finally an aggregate is
constructed from these scaled scores. In contrast the 1986 ACT procedure has multiple applications
of a bivariate adjustment procedure in a multivariate data setting: it is not an appropriate approach
to the construction of a TE score.

28 Both these predicted effects of the 1986 changes were advised to the ACT Schools Accrediting Agency,
which for 1986-88 opted not to amend the scaling procedure adopted in haste in response to non-technically
based recommendations in MATHEF.
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TABLE 12.8

Correlations of TE and ASAT Scores:

Students with TE package (excluding Mature Age NESB)

College (1,2) (1,3) (2,3) (1,4) (2,4) (3,4) (1,5) (3,5)

COP 0.99734 0.99218 0.99781 0.6638 0.6465 0.6261 0.6548 0.6448
DAR 0.99979 0.99786 0.99831 0.6932 0.6962 0.6892 0.6339 0.6338
DCK 0.99828 0.99472 0.99747 0.6756 0.6695 0.6536 0.6046 0.5919
ERN 0.99571 0.98079 0.99054 0.6406 0.6264 0.5762 0.5991 0.5889
HWK 0.99918 0.99519 0.99645 0.6718 0.6684 0.6496 0.5536 0.5524
NAR 0.99866 0.99490 0.99370 0.7355 0.7320 0.7118 0.5350 0.5379
PHL 0.99832 0.99617 0.99783 0.6172 0.6092 0.5958 0.5986 0.5895
STR 0.99827 0.99094 0.99556 0.6450 0.6408 0.6190 0.5494 0.5373
CCE 0.99796 0.99270 0.99452 0.7113 0.7170 0.6908 0.3689 0.3809
MER 0.99504 0.99701 0.99847 0.7611 0.7721 0.7607 0.4689 0.4992
STC 0.99572 0.99494 0.99773 0.7544 0.7705 0.7586 0.6053 0.6007
EDM 0.99724 0.98895 0.99528 0.7079 0.7015 0.6752 0.5948 0.5810
MAR 0.99640 0.99646 0.99943 0.7310 0.7285 0.7265 0.6190 0.6130

Code: (1) = TEACT, (2) = TASAT, (3) = TEMM, (4) = ASAT, (5) = NTI.

CONCLUSION 12.2. Using more than one reference scale implies that optimal subject
choices can increase a student’s TE score via statistical properties of a scaling proce-
dure. Such choices may be contrary to “educationally desirable” curriculum construc-
tion.

A standard method of describing agreement between two sets of scores that have “much in
common” is via correlation coefficients. In the present context these are listed for the three TE
scores in Table 12.8. With one exception they exceed 0.99. For interest we also show the correlations
of the TE scores with ASAT-T , and for TEACT and TEMM, with the number of course units (cf.
Table 10.1).

TE scores measure first and foremost the quantities we have denoted {vi} which for the ACT
have a standard deviation sv in the region of 90. The differences in TE scores from different scaling
procedures, if measured as standard deviations of (say) TEACT – TEMM, yield quantities s∆
about 5 to 10 as shown in Table 12.7. The correlation coefficient is approximately equal to

s2v
s2v + s2∆

≈ 902

902 + 102
≈ 0.988.

Significantly, the one correlation coefficient in Table 12.8 smaller than 0.99 corresponds to a much
smaller term sv. Differences between students’ TE scores within a college are directly summarized
by the standard deviations listed in the right-hand part of Table 12.7.

As also shown by the entries in Table 12.4, the standard deviations of TE score changes are a
more useful way of summarizing the effects on TE scores of different scaling procedures.

CONCLUSION 12.3. Correlation coefficients do not usefully summarize differences in TE
scores resulting from different scaling procedures.

Regression Study Showing TEACT/TEMM Difference

Table 12.9 shows the proportions of sub-scale and Writing Task scores in the optimal regression
predictors of TEACT and of TEMM computed with zero ASAT weight in the scaling criterion
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TABLE 12.9

Analyses of ASAT Scores as Predictors of TE Scores

TEACT TEMM Diff’ce
Run # corr Regression coefficients corr Regression coefficients corr.

Q : V : W Q : V : W coeff.s

250 0.691 56.5 : 7.1 : 36.4 0.618 41.6 : 7.8 : 50.7 0.073
251 0.811 34.2 : 21.9 : 43.9 0.807 36.2 : 20.6 : 43.1 0.004†
252 0.713 54.9 : 10.4 : 34.8 0.693 50.3 : 11.2 : 38.5 0.020
253 0.716 52.8 : 25.3 : 21.9 0.695 58.8 : 19.8 : 21.5 0.021
254 0.697 59.4 : 21.3 : 19.3 0.690 58.0 : 19.6 : 22.5 0.007†
255 0.644 48.9 : 27.5 : 23.6 0.618 39.3 : 31.1 : 29.6 0.026
256 0.758 59.0 : 9.3 : 31.7 0.732 55.8 : 9.7 : 34.5 0.026
257 0.720 34.5 : 34.2 : 31.4 0.694 24.9 : 38.9 : 36.2 0.026
258 0.686 58.2 : 13.0 : 28.9 0.634 51.6 : 13.4 : 35.0 0.052
259 0.777 42.6 : 27.1 : 30.3 0.754 44.1 : 23.7 : 32.1 0.023
260 0.634 51.6 : 9.4 : 39.0 0.615 48.7 : 10.7 : 40.7 0.019
261 0.690 46.1 : 17.3 : 36.6 0.664 41.0 : 18.4 : 40.6 0.026
262 0.738 59.6 : 16.8 : 23.6 0.729 56.8 : 18.5 : 24.8 0.009†
† See text

variables (the data set differs slightly from Table 4.1). It is immediately evident that correlations
of TEACT are higher than of TEMM, and we quickly see why: the group scaling parameters are
much influenced by the error components of ASAT scores in all but the largest of the moderation
groups. Since ASAT scores are convex mixtures of the predictor variables, their optimal mixture
then has a larger correlation with an aggregate score, or selected aggregate score. The increase
in the correlation coefficient is significant for all cases except the three marked (†). The increase
is associated with greater weight to Writing Task scores and usually a slightly larger fall in the
weight in ASAT-Q scores, though the two are not invariably associated. The balance is necessarily
reflected in ASAT-V scores where there are more rises than falls (4 falls, 9 rises). This change is
a result of a statistical artefact: the increase in predictability comes purely from using a scaling
procedure biased towards producing the larger correlation.

Moderation Group Parameters

A scaling procedure is effected by transforming the scores in groups. It follows then that scaling
procedures can be compared at the most basic level by comparing the transformations within these
moderation groups (as they are called in the ACT).

Tables 12.10 and 12.11 list two pairs of parameters (aj , bj) needed to transform the scaled
course scores Xij used for constructing TEACT into the scores Yij used for TEMM (or, TASAT)
via Yij = aj + bjXij . Table 12.10 comes from all mixed-sex colleges, Table 12.11 from all single-sex
colleges. Each row corresponds to one moderation group. Rows are grouped according to the course
area of the group (or of the lowest course area number when the group has courses from more than
one area). All moderation groups, whether standard, intermediate or small, are listed.

Start with the right-hand pairs, which effectively compare the 1986 and 1985 scaling proce-
dures. When a pair equals or is almost equal to (0, 1), it is mostly the case that ASAT-T has
been used as the reference scale score under both procedures. This occurs for most entries for
areas numbered 22 and up. Small deviations from (0.000, 1.000) represent the effects of numerical
rounding errors (in general, I have worked and reported more decimal places to reduce rounding
errors in any subsequent computations), and should be ignored. Occasionally the entries represent
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First of 4 pp. for Table 12.10
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Second of 4 pp. for Table 12.10
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Third of 4 pp. for Table 12.10
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Fourth of 4 pp. for Table 12.10
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First of 2 pp. for Table 12.11



12. Comparisons of Three Scaling Procedures via TE Scores &c. 105

Second of 2 pp. for Table 12.11
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more than just rounding error: I used an age-based definition of Mature Age student, and this
differs slightly from the Agency’s definition (in 1986, several students aged more than 21 years on
31 December were included in the group whose ASAT scores were used in the scaling procedure).

Most entries for areas numbered up to 20 correspond to use of ASAT sub-scale scores under
the 1986 procedure. These entries reflect both slightly higher correlations of scores with the sub-
scale rather than ASAT-T (shown here by the parameter bj for ASAT-T scaling being larger than
1.000), and either the selection effect noted a couple of pages earlier (for ASAT-T scaling the
parameter aj tends to be negative at mixed-sex colleges) or the gender-linked difference in the
Quantitative/Verbal areas (for ASAT-T scaling the parameter aj tends to be negative for English
at male single-sex colleges and for Mathematics, Computing, Physics and Chemistry at female
single-sex colleges, and positive otherwise).

Now refer to the left-hand pairs. They compare the 1986 and the Optimal Other Course Score
(OptOCSP) scaling procedures. When a pair equals or is almost equal to (0, 1), it now usually
indicates a Small Group, or if only bj ≈ 1.000, an Intermediate Group.

Look first at the scale parameters bj . These tend to be approximately similar to the ASAT-T
parameters in groups numbered up to 20 where both procedures use a single reference scale relative
to the 1986 procedure, somewhat smaller in more traditional academic course areas 22 to 62, and
if anything larger in not so traditional course areas numbered upwards from 70.

Look next at the location parameters aj . Since in general we have tried to preserve the
standard deviation of TE scores between different procedures, overall reductions in scale parameters
bj must be accompanied by larger variations in the location parameters, and this is exactly what is
observed. In groups with course areas numbered up to 20, the selection and gender-linked effects
of the 1986 procedure relative to a single reference scale such as with ASAT-T scaling are no
longer obvious. Within an area (i.e., across colleges), the variation in both scale and location
parameters reflects sampling variability, indicative of the precision or otherwise with which the
parameters can be determined. The only exception I may see to this statement concerns area 16.
Here it is arguably a possibility that the more developed skills of problem solving cum analytical
reasoning that advantage a student taking an ASAT paper relative to a general measure of academic
achievement as is used in scaling under OptOCSP, exacerbate the selection bias of the scores under
the 1986 procedure.

CONCLUSION 12.4. No systematic bias effects are observable in the moderation group
parameters computed via the Optimal Other Course Score Scaling Procedure.



CHAPTER 13

Miscellanea

This Chapter starts by indicating how simulation (“Monte Carlo”) studies of data sets may
further help in evaluating the validity or otherwise of different scaling procedures. The data set
used to illustrate some of this work reinforces support for OptCSP against ASATSP. The work is
mainly exploratory (cf. Appendix to Chapter 1).

We conclude by noting that the approach used in this report for producing a single aggregate
applies equally well to the construction of each of a set of more than one aggregate should they be
so prescribed.

Scaling Procedures and Algorithms

For the purposes of implementation, a scaling procedure is an algorithm. Any computational
algorithm must be specifiable in algebraic terms. In this language it should be possible to see
the precise assumptions on which the algorithm is based. The collection of all these assumptions
constitutes a model. And the model provides the natural reference framework for discussion of the
assumptions, the algorithm, and any applications of the model to data.

The existing ACT scaling procedure is certainly specified as an algorithm, in the sense of giving
a recipe for extracting one set of numbers from of another set. But as a model, and in terms of
its relation to applications (e.g., in Queensland as well as the ACT), the literature is markedly
deficient. The expositions in McGaw (1977) and analogous papers emerging from the ACT around
the same period (e.g. Keeves, McBryde & Bennett, 1977) provide descriptions of the mechanics of
the algorithm, but the scant evaluations of the assumptions they give are confined to first-order
effects: the fact that second-order properties of the model are explicitly involved in the algorithm
is ignored, as are the inconsistencies between ASAT and course scores. There are notes in McGaw
(1987), overlapping in part with discussion in the ACT that preceded M&B, reflecting a growing
awareness of this oversight, though McGaw’s account still gives no hint of the fact that the problem
of producing an algorithm that takes explicit account of second-order properties had been addressed
at least as early as 1985 (Daley & Seneta, 1986).

For present purposes it is enough to consider the 1977–85 algorithm. Our conclusions mostly
apply equally to the 1986–88 version in spite of its being inconsistent with the model describing
the data.

Why Simulation Studies?

The transition from the representations of Chapter 2 to the model of Chapter 3 enables us to
make the further transition from the balanced data set of Chapter 2 to the unbalanced data sets
that occur in practice. We can study the latter theoretically via approximations and asymptotics
as in Daley (1987a, 1988), and empirically via simulation studies, provided we can emulate the
structure of such data sets.

One of the difficulties of studying data sets like those of an ACT college concerns the patterns
of student course choice behaviour. These patterns are certainly associated with the course score
behaviour as shown by general achievement measures vi or by ASAT scores Ai (cf. ASAT and TE
Scores, 1988). The shuffling routines used below destroy those associations, and so provide some
evidence that any interaction effect between the scaling procedure and this dependence between
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general measures and course choice behaviour is at most weak. (This does not ensure that no biases
come as a result! — recall the discussion re equation (7.1). But since course choice behaviour across
colleges is mostly consistent with variation in the general measures, it is a reasonable presumption
that any such biases as may exist are not noticeably affected by choice of school.)

Other tests, requiring development work at this stage, would abandon the shuffling of the
general measures vi and simulate the error variables instead. The simplest of these would test the
one-factor model, but it is also appropriate to compare results from such a test with those coming
from a two-factor model. This work would overlap with both data analyses investigating the two-
factor model (3.14) and possible constructions of multiple aggregates considered briefly later in this
chapter.

In view of the simulations run already and the theoretical analysis in Daley (1988), I would
expect such simulations to confirm the thrust of the empirical analyses noted in the main body of
this report.

The 1977–85 ACT Algorithm — Model 1

I start by introducing notation in the context of what appeared to me to be the existing ACT
procedure when I first saw it in 1984; some of this view has been reflected in Daley (1985).

Scaled scores Yij , formed by linear transformation from the school-based raw scores Xij , are
expressible in terms of ASAT scores Ai, which represent student i′s ability cum achievement index,
except for error terms eij , so that

aj + bjXij = Yij = Ai − eij , (13.1)

errors being attributable to imprecisions in the scores Xij (equivalently, Yij). Thus,

Ai = Yij + eij , (13.2)

and within any given sub-population, notably the candidature Cj of course j, we should have the
moments of {Ai : i in Cj} and {Yij : i in Cj} agreeing. Then if we also assume that the first
moment of eij is approximately zero, and that the variance of {eij : i in Cj} and its covariance with
{Yij : i in Cj} are such that

varj(eij) + 2 covj(eij , Yij) ≈ 0, (13.3)

we should have both
avej(Ai) ≈ avej(Yij) = aj + bjXij (13.4)

and
varj(Ai) ≈ varj(Yij) = b2j varj(Xij). (13.5)

For convenience, we shall call the equations (13.4) and (13.5) the existing scaling parameter equa-
tions. All we have done is to give equations (13.1)–(13.3) as the core of a model from which to derive
the equations that are currently used. En route we have stated certain assumptions explicitly, to
which we shall return shortly. We stress that,

if the data are inconsistent with consequences of these assumptions, then some
substitute assumptions must be made in order to justify the continued use of
these equations.

All I am attempting to do here, is to present a scenario that appears to be consistent with the
thinking as it emerges from reading between the lines, because to the best of my knowledge

there is no comprehensive published or written version of a set of assumptions
that leads to these two sets of scaling equations
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TABLE 13.1

Summary Statistics in Simulation Study of ASAT Scaling

Subst’n # corr(TEi, Ai) ave(Di) SD(Di) SD(TEi/3.6)

Original 0.717
1 0.812 3.89 22.38 23.50
2 0.841 1.58 11.89 23.56
3 0.870 1.04 11.15 24.07
4 0.880 0.49 5.52 24.04
5 0.895 0.63 7.23 24.45

— or if there is, it is not readily accessible.

Observe that equation (13.2) implies that the candidature Cj in course j could equally well
have had the set of scores

{Ai + µi} = {Yij + µi + eij}

for any {µi} because this does not change the relationship between {Yij} and {Ai}. A test of
the model can thus be constructed by (random) interchange of the scores Ai coupled with the
appropriate simultaneous shift of all Yij . Specifically,

simultaneously replace Ai by A′
i and Yij by Y ′

ij ≡ Yij +A′
i −Ai. (13.6)

Then if the scaling procedure and model are consistent, since the changes have left unaltered both
the error variables eij and the component of Yij correlated with the eij , and if moreover the changes
are executed randomly in the sense of being otherwise independent of the scores, we should expect
that (e.g.) TE scores, which are interpretable by (13.1) as

TEi = 3.6Ai +
∑

best 3.6 scores

(−eij), (13.7)

should likewise be altered simply to 3.6A′
i + (TEi − 3.6Ai). In other words,

Di ≡ (TE′
i − TEi)− 3.6(A′

i −Ai) (13.8)

is an estimator of zero. Similarly, from (13.5), the parameters b′j satisfying (13.9)

varj(A
′
j) ≈ varj(Y

′
ij) = (b′j)

2 varj(X
′
ij) (13.9)

should have b′j/bj ≈ 1.

This substitution routine has been executed on one data set for which corr(Ti, Ai) ≈ 0.70.
Table 13.1 summarizes the effect of 5 successive passes through the substitution operation, in
which student i retains the same deviations eij in the same set of subjects at the time of making
the changes in ASAT and course scores. (Specifically, suppose that after the nth substitution the
ASAT and scaled scores are An

i and Y n
ij , so that the residual scores are enij = An

i −Y n
ij ; then replace

An
i by An+1

i and rescale the scores {An+1
i + enij}, yielding {Y n+1

ij } and thus a new set of residual
scores.)
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TABLE 13.2

Some Location and Scale Parameters in

the first 4 Substitutions underlying Table 13.1

Subst’n # English Group Mathematics Group
aj bj aj bj

1 –0.084 1.0468 –0.182 1.1518
2 –0.010 1.0053 0.027 1.0137
3 –0.002 1.0011 0.014 1.0028
4 –0.001 1.0002 0.008 1.0010

The trends in trials 1–5 in Table 13.1 indicate rapid divergence of the data set from its original
character. In comparison with the results of other trials below, it is not the substitution routine
that does this but rather the nature of the model.

CONCLUSION 13.1. The 1977–85 scaling procedure and the model described by equations
(13.1)–(13.3) are not mutually consistent.

For the record, the parameters (aj , bj) for the moderation groups with English and Mathe-
matics scores relative to their values in the preceding substitution (or original set) are as in Table
13.2. These serve merely to emphasize that, no matter how the original data may deviate from the
model, these deviations are largely lost as successive substitutions force the data to take on some
character implicit in the substitutions.

The 1977–85 ACT Algorithm — Model 2

The major deficiency of the model of the preceding section lies in the assumption, implicit
in (13.1) and succeeding relations, that ASAT scores have far smaller errors than course scores in
the context of the model used to describe the data set consisting of both course and ASAT scores.
Modify that assumption so as to regard ASAT scores, along with course scores, as being described
by the one-factor model at (4.21), and instead of replacing the ASAT scores per se, use for each
student the estimate ṽi of the general achievement factor to find the estimates of the residuals in
each score, and substitute for each estimate of the achievement factor another such estimate: in
order to maintain the same distribution of such factors, replace ṽi by ṽi+1 for some enumeration
of the population (and identify ṽN+1 with ṽ1 in a college of N students). Recompute scaling
parameters, and repeat the whole procedure a number of times. If the model holds, the moments
of the estimators of the discrepancies Di should be close to zero (cf. Table 13.1 where this is not
so!).

Following this procedure through a full cycle of a college data set revealed a far slower rate of
deviation than is evident in Table 13.2. Another way of following such changes is to consider the
difference in TE scores after successive shuffles much as at (13.8) but with estimates of vi replacing
the ASAT scores there. The differences are no longer decreasing monotonically to zero, but change
sign (the first few are -1.41, -0.73, 0.33, -0.02, -0.42, 0.42, 0.40, -0.48, -1.69,. . . ), while their standard
deviations are no longer monotonically decreasing either. A long term trend is evident, and to show
this, Table 13.3 give the mean square of the differences in some sets of 10 consecutive trials. Finally,
as a measure of both the stability and the slow changes, when the first cycle through the population
is complete, the mean difference equals 0.16 (which is neither small nor large in comparison with
other values), and the standard deviation is 1.25, which is smaller than generally occurs but not
the smallest such statistic.
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TABLE 13.3

Means and Standard Deviations of Differences of

Adjusted TE Scores after Shuffling Estimators of vi

Trials Mean square SD of Diff’ce.
difference

1–10 0.655 4.13
31–40 0.476 3.47
64–73 0.222 2.56

101–110 0.137 1.97

full cycle 0.16 1.16

Method-of-Moment Scaling

Another sequence of trials has been run in which instead of the existing scaling procedure,
Method-of-Moment scaling is used to estimate the parameters, but with the same residuals used
in each case. Thus, this sequence of trials always starts from the given residuals, and there are no
trends to observe as each ṽi-permutation is equivalent to any other.

Table 13.4 gives various data for the first 56 substitutions. The correlations of shuffled ASAT
and TE scores are shown in the last column, showing no trend as just noted (cf. Tables 13.1 and
13.3). The standard deviation of differences of TE scores is of similar size to what is shown in Table
13.3, but if the two sets of TE scores concerned are given the same first two moments, this falls
sharply (results not shown), indicating that the rankings implied by the two TE scores are much
closer than appears without such standardization.

This set of Monte Carlo shuffling trials covers just one college, and is certainly not complete.
Yet the indications from them are consistent with the conclusions drawn earlier, in e.g. Chapter 8
so far as precision is concerned, from Chapter 10 in terms of correlations between course scores and
scaling criteria. For the one college whose data have been used, it appears to be the case that the
Method-of-Moment procedure leads to the smallest changes as the estimates of {vi} are swapped
amongst themselves and the pseudo data sets reconstructed and rescaled. This is consistent with
Conclusion 8.2. It is of interest in such experiments to sort out the relative impact of ASAT scores
on one hand and the Other Course Score scaling procedure facets on the other, so far as deviations
of the data from the models of Chapter 3 are concerned. This is said from the standpoint stressed
earlier that

any scaling procedure is “fair” only to the extent to which the data are consistent
with the assumptions used to construct the procedure, and in this regard, the
existing procedure is far from being as fair as is easily and reasonably attainable.

CONCLUSION 13.2. The major component of the data set requiring statistical scrutiny
to ensure fair use of a statistical scaling procedure concerns the ASAT scores.

CONCLUSION 13.3. The existing scaling parameter equations (13.4)–(13.5) are not jus-
tified by Model 1 but are supported a one-factor model as in Model 2. Method-of-
Moment estimators with Other Course Score scaling may give an even more consistent
fit to the one-factor model description of the data.
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TABLE 13.4

Statistics from Shuffling Estimates of vi with Constant Residuals

using Other Course Score Scaling with Method-of-Moment Estimation

Multiple Aggregates

There are comments in Masters & Beswick (1986) and implications in some of MATHEF’s
conclusions (see in particular §§6.39–44 and its Recommendations 2 and 3) that in principle it
should be possible to produce for some students more than one aggregate score, each reflecting
measures of achievement in different areas of study. In this section I discuss briefly the question of
having two aggregates, which for convenience I call briefly Q- and V -aggregates.
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In terms of the representations of Chapter 2 or the models of Chapter 3, each course score Yij

can be represented either as a sum of principal components or else as

Yij = vi + γjvi2 + eij (13.10)

where the terms eij represent error, have mean zero, and are uncorrelated with the general achieve-
ment measure vi and contrast factor vi2. Assume that vi2 is positively correlated with the difference
Qi − Vi. Then course scores for which γj > 0 are those that reflect more highly developed Q-skills,
while for γj < 0 the scores reflect more highly developed V -skills. An averaged aggregate of scores
for which all γj > 0 estimates vi +C ′

ivi2 (plus error that has mean zero) for some positive C ′
i, and

may be called an averaged Q-aggregate. Similarly, an averaged aggregate of course scores for which
γj < 0 estimates vi−C ′′

i vi2 for positive C ′′
i , and is an averaged V -aggregate. In educational jargon,

these two measures reflect relative achievement in the quantitative and verbal domains respectively.
If a course curriculum is defined externally as in Queensland or for a public examination

system, the nature of an achievement measure in the course changes only slowly with time and so
can be readily classified by its coefficient γj . Under the ACT system courses are defined within each
college, and are given area codes common to the system as a whole, though the courses themselves
can be constituted as a selection of several units and thus need not be anything like a common
course of study for students even within a college. It is thus more problematic to classify courses
a priori as contributing to a Q- or V -aggregate.

Nevertheless, supposing such a classification has been agreed, it follows from the discussion of
Chapters 2 and 3 that an aggregate should be constructed for each group of course scores using
a one-factor model and Method-of-Moment estimation for the parameters (assuming that a linear
transformation is satisfactory). Likewise, with only school-based assessment as in the ACT and
Queensland, a reference scale is needed to establish comparability of scores between colleges, and
the principles illustrated by the discussion of Chapters 4 to 7 apply.

In practice, educational criteria would play a role in constructing classifications: this being
the case, statistical criteria should be used at the very least in post mortem studies to verify
that the educational arguments are meeting the goals they claim. Also, it may be necessary to
impose curriculum constraints to ensure that students’ course choices have a chance of meeting
educationally desired goals.

Current scaling practice in South Australia crudely resembles the use of classifications as above
to construct two aggregates as an intermediate step in the construction of a single aggregate that
can be regarded as estimating vi + |Civi2| for student i.

Another practical difficulty concerns the construction of the Q- and V -estimators from a suffi-
cient number of scores to warrant any aggregate measure being regarded as a good approximation to
a well-defined “signal” component as distinct from reflecting predominantly a substantial random
component or “noise”.

CONCLUSION 13.4. If multiple aggregates are constructed within restricted subsets of
courses, the principles of Other Course Score scaling using Method-of-Moment esti-
mators, and construction and use of reference scales as in Chapters 4–7, apply.
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Modelling Examination Marks, II

D. J. DALEY

Statistics Department
University of North Carolina at Chapel Hill

(visiting)29

A B S T R A C T

In a given population C suppose that student i studies a subset Si of the subjects
offered in a curriculum and that marks or assessment scores {Xij : i in Cj} are given
reflecting the (relative) achievements of the candidature Cj of the students taking subject
j. Various estimates of scale parameters {βj} in the one-factor model

αj + βjXij ≡ Yij = vi + eij

for uncorrelated error variables {eij} are examined for unbiasedness: those based on a
method of moments approach appear to be asymptotically optimal. Further, for the range
of values of var(vi) and var(eij) encountered in practice, the same estimators are fairly
robust against the two-factor model

Yij = vi1 + γjvi2 + e′ij

in which verbal/quantitative contrast factor measures {vi2} supplement the general fac-
tors {vi1}, while the sizes of the residuals {e′ij} are then close to the known sizes of the
measurement errors they incorporate.

1. Introduction

This paper is a sequel to an earlier joint work (Daley & Seneta, 1986), referred to below as (I),
in which a one-factor model was proposed to describe a data set {Xij} such as the examination
marks obtained by students at the Year 12 level at which they complete their secondary schooling
and seek entry to a tertiary institution on the basis of their exam. marks as their academic record.
Within the several systems operating in Australasia, such data sets have for some one to two
decades been the source for the prime or even sole determinant of entry to university or college of
advanced education. The earlier paper and this are concerned with examining the basis for such
determination which, for all that it has been accepted at large, is neither well understood nor
administered with the degree of impartiality and sophistication that might be hoped for. This is
said because the analyses that follow from the discussion below lead to the conclusion that, if the
existing procedures were brought into line with what is being attempted, then for admission to
some tertiary level courses, proportions of up to some 10 to 20 or even 30 per cent. of students who
at present gain admission would be replaced by others. Unquestionably, existing procedures are
technically sloppy; worse, the sloppiness exists to an extent that there are observable consequences

29 Permanent address: Statistics Dept. (IAS), Australian National University, G.P.O. Box 4, Canberra

A.C.T. 2601, Australia.
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of appreciable size. However, it would be wrong to attach blame to some authorities, because the
technical sloppiness has first to be exposed, and that in part is what this paper is about.

The data set {Xij} need not necessarily consist simply of examination marks. For example, the
marks or scores may arise from school-based assessments, or from a combination of them with exam.
marks, or from reference test scores such as Aptitude tests (e.g. SAT scores in USA or Australian
Scholastic Aptitude Test scores). It will be convenient to call all such measures scores or marks,
and to call the “subject” or “course” area from which they are derived a subject or course, even
though there may not necessarily be a uniform and precisely defined “subject” for the individuals
i given scores Xij in the subject or course j.

The dominant issues in this paper are the consequences of estimating parameters (αj , βj) in
the linear transformation

Yij = αj + βjXij (1.1)

and the resultant properties of the average score

Yi· ≡ avei(Yij) (1.2)

(formal first and second moment operators like avei(·) are defined around (1.3)–(1.7) below). In
particular we note the different properties of Yi· that arise from a variety of possible estimation
procedures for (αj , βj) and from a variety of possible model assumptions for {Yij}.

The basic notation used here is consistent with that of Daley (1988). The set C of all individuals
with scores {Xij} is called the candidature. In general it will be a sub-candidature

Cj ≡ {i : i has a score Xij}

of individuals taking a particular course j, because usually each student i is expected to choose
only a subset Si from all the subjects S in the curriculum. Student i has ni ≡ #(Si) course scores
and Nj ≡ #(Cj) students take course j. Formal moments are defined as in

avej(Xij) =
∑

i in Cj

Xij/Nj , (1.3)

[s.d.j(Xij)]
2 = varj(Xij) =

∑

i in Cj

[Xij − avej(Xij)]
2/Nj , (1.4)

avejk(Xij) =
∑

i in Cjk

Xij/Njk , (1.5)

covjk(Xij ,Xik) =
∑

i in Cjk

[Xij − avejk(Xij)][Xik − avekj(Xik)]/Njk , (1.6)

where Cjk = Cj ∩ Ck, Njk = #(Cjk), and

corrjk(Xij ,Xik) =
covjk(Xij ,Xik)

[s.d.jk(Xij)][s.d.kj(Xik)]
. (1.7)

Under (1.1),

avej(Yij) = αj + βj avej(Xij) , (1.8)

varj(Yij) = β2
j varj(Xij). (1.9)
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A major aim here is to elucidate what is entailed in basing ranking decisions on statistics like
(cf. (1.2))

Yi· =
∑

j in Si

Yij/ni (1.10)

or more generally, for some subset S ′′
i of Si that may depend on {Yij : j in Si},

Y ′′
i· =

∑

j in S′′

i

Yij/#(S ′′
i ) (1.11)

Whether it is specifically stated or not, Australasian practice has reflected as an act of faith that,
no matter what scaling procedure has been used, a representation of the form

Yij = vi + eij (1.12)

then holds for certain error terms eij with zero mean, and that this is a valid unbiased representation.
If this is so, then

Y ′′
i· = vi + e′′i (1.13)

for some error term e′′i that does not necessarily have zero mean but does have smaller variance than
(almost all) eij . Empirically, a representation such as (1.12) does hold as a crude first approximation,
implying that, when a recipe such as at (1.11) is followed, the representation at (1.13) necessarily
holds in this crude sense. Because of this implication, it follows that when the parameter vi in
(1.12) is replaced by an estimate, unbiasedness of that estimate will be a highly desirable property.

There is an important practical reason for considering linear transformations such as at (1.1),
relating to an invariance property of rankings as at (1.10) and (1.11). It is simply this, that if
{(αj , βj), vi} as in (1.1) and (1.12) are replaced by

{(α′
j , β

′
j), v

′
i} ≡ {(A+ αjB, βjB), A+Bvi} (1.14)

for any real A and real positive B, so that in place of Yij we should have

Y ′
ij = A+ αjB + βjBXij = A+BYij , (1.15)

the ranking as follows from (1.10) or (1.11) is unchanged, and the implication that (1.13) holds is
likewise unchanged.

2. One-factor model

Whether unknowingly or explicitly as reported for example in Daley (1987) and Seneta (1987),
existing Australasian mark-scaling procedures are based on an assumption that the one-factor
model as in (I) provides a satisfactory description of the scores {Xij} concerned. The linearly
transformed scores Yij as at (1.1), or more generally the transforms fj(Xij) for some family of
monotonic increasing functions fj(·), are assumed to have the structure

Yij = vi + eij (2.1)

for some unknown common (achievement) measure vi and residual error terms eij that may embody
both model-fit and measurement errors, such that, when viewed as random variables (r.v.s), the
set {eij : i in Cj} has

E(eij) = 0, Var(eij) = σ2
j , (2.2)



Reprint of Modelling Examination Marks, II 119

and is independent of both {vi} and sets {eik} for k 6= j. (The use of Var(·) as distinct from e.g.
varj(·) is deliberate.) From these assumptions it follows that

Avej(Yij) = avej(vi), (2.3)

Varj(Yij) = varj(vi) + σ2
j , (2.4)

Covjk(eij , eik) = 0, (2.5)

E(covj(vi, eij)) = 0, (2.6)

Covjk(Yij , Yik) = varjk(vi). (2.7)

3. Estimation in the one-factor model

The concern of this section is with the following questions:

If random variables {Xij} are such that {Yij} ≡ {αj + βjXij} satisfy the assumptions of
section 2, what estimators of {(αj , βj), vi} might be used, and what are their properties?

3.1. Maximum likelihood estimation

Suppose additionally, only in this sub-section, that the r.v.s eij are independently and normally
distributed like N(0, σ2

j ) r.v.s. Then the likelihood of the data set {Xij} is well-defined by

L ≡
∏

j in S

∏

i in Cj

(σj

√
2π)−1 exp[−(αj + βjXij − vi)

2/2σ2
j ]. (3.1)

Suppose that for one particular j we have (αj , βj) = (0, 1) and vi = Xij . Then the term exp[·] in
(3.1) is identically one for this j, irrespective of σ2

j , and L is maximized by setting σ2
j = 0 and takes

the value L = ∞.
In comparison with the three other estimators from (I), the assumption of normality in order

to have an expression for L is unnecessarily strong. Also, as in (I), it is unreasonable to assume
that σ2

j = 0 for any j. Accordingly, this approach will be considered no further here.

3.2. Least squares estimation

It is frequently the case that there are close connections between least squares and maximum
likelihood estimators. Accordingly, in reverting to the general one-factor model assumptions as
outlined earlier without any assumptions of normality, we start by seeking estimators via the
minimization of

S2 ≡
∑

j in S

∑

i in Cj

(Yij − vi)
2 =

∑

j in S

∑

i in Cj

(αj + βjXij − vi)
2. (3.2)

Inspection shows that S2 is minimized with the value 0 by setting αj = βj = vi = 0 for all j in S
and i in Cj . Now the only conceivable boundary condition involving these parameters concerns the
positivity of βj , so we can expect that any other minimum of S2 will be a solution {(āj , b̄j), v̄i} of
the least squares normal equations

v̄i =
∑

j in Si

(āj + b̄jXij)/ni ≡ avei(āj + b̄jXij) = avei(Ȳij), (3.3)

āj + b̄j avej(Xij) = avej(v̄i), (3.4)

b̄j varj(Xij) = covj(v̄i,Xij). (3.5)
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Given any non-trivial solution {(āj , b̄j), v̄i}, inspection shows that for any real A and real positive
B, the set {(A+Bāj , Bb̄j), A+Bv̄i} is also a solution. The all-zero solution is included in this set
at the point (A, B) = (0, 0).

Suppose without loss of generality that the data set {Xij} is generated by the model

Xij = vi + eij , (3.6)

and that the set {(āj , b̄j), v̄i} satisfies the equations (3.3)–(3.5) with (ās, b̄s) = (0, 1) for some s
(this last condition simply determines values of the parameters A, B within the class of solutions
of the equations). Observe that the model quantities have (αj , βj) = (0, 1) for all j: we shall show
that in general we cannot expect the least squares estimators to have these values as their long-run
average values, and thereby conclude that

in general, the least squares estimators {(āj , b̄j), v̄i} are biased. (3.7)

Start by assuming that all Nj are sufficiently large for the strong law of large numbers to hold,
so that

avej(Xij) = avej(vi) +Op(N
− 1

2 ), (3.8)

varj(Xij) = varj(vi) + σ2
j (1 +Op(N

− 1

2 )). (3.9)

Then, correct to terms that are op(1) in N·,

v̄i = avei(āj + b̄jXij) = avei(āj + b̄j(vi + eij)) = avei(āj) + vi avei(b̄j) + avei(b̄jeij),

Var(v̄i) = o(1) + o(1) + avei(b̄
2
jσ

2
j ),

Varj(v̄i) ≈ o(1) + [avej(avei(b̄k))]
2 varj(vi) + avej [avei(b̄

2
kσ

2
k)] .

In practice, there is interest in finding transformations that satisfy one of the two sets of constraints:

[1] {Xis} = {Yis} for some particular subject s, equivalently, (αs, βs) = (0, 1);

[2]
∑

j

∑
i(Xij − Yij) = 0 =

∑
j

∑
i(X

2
ij − Y 2

ij), equivalently,

X·· ≡ aveall(Xij) ≡
∑

j in S Nj avej(Xij)∑
j in S Nj

=

∑
j in S Nj avej(Yij)∑

j in S Nj
≡ Y·· (3.10)

and

varall(Xij) ≡
∑

j

∑
i(Xij −X··)

2

∑
j in S Nj

=

∑
j in S Nj [varj(Xij) + (avej(Xij)−X··)

2]
∑

j in S Nj

=

∑
j in S Nj [varj(Yij) + (avej(Yij)− Y··)

2]
∑

j in S Nj
≡ varall(Yij). (3.11)

Either of these sets of constraints leads to seeking solutions {(āj , b̄j), v̄i} of a modified set of
equations. In the case of [1] for example, we should seek to minimize

S2 + λ1αs + λ2(βs − 1) (3.12)



Reprint of Modelling Examination Marks, II 121

for Lagrangian multipliers λ1, λ2, leading to equations (3.3)–(3.5) as above for j 6= s while for j = s
we have instead

ās + b̄s aves(Xis) + λ1 = aves(v̄i),

b̄s vars(Xis) + λ2 = covs(v̄i,Xis).

In view of the assumed identity (αs, βs) = (0, 1) , these yield

λ1 = aves(v̄i)− aves(Xis), (3.13)

λ2 = covs(v̄i,Xis)− vars(Xis), (3.14)

which with the other equations at (3.3)–(3.5) yield a set of 2#(S) + #(C) linear equations in as
many unknowns. In what follows, it is assumed that this set has a unique solution (cf. (I)). Observe
that the convergence of any iterative routine for solving the equations is prima facie evidence for
the existence though not necessarily the uniqueness of a solution.

The identities that follow from a similar treatment of the constraints at [2] are more suggestive
because they can be written (with X·j = avej(Xij)) in the forms

∑

j

Nj [αj + (βj − 1)X·j ] = 0, (3.15)

∑

j

Nj [(β
2
j − 1) varj(Xij) + (αj + βjX·j)

2 −X2
·j ] = 0, (3.16)

from which we may anticipate that if the scores Xij satisfy (3.6) with aveall(vi) = 0, then when
ni ≈ n independent of i and vi, both

∑

j

Nj(βj − 1) ≈ 0 and
∑

j

(βj − 1) ≈ 0. (3.17)

The expression to be minimized, with Lagrangian parameters λ1 and λ2, is now

S2 + 2λ1

∑

j

Nj [αj + (βj − 1)X·j ] + λ2

∑

j

Nj [(β
2
j − 1) varj(Xij) + (αj + βjX·j)

2 −X2
·j ].

The resulting normal equations can be written in the form

[āj + b̄jX·j − avej(v̄i)]+λ1 + λ2[āj + b̄jX·j ] = 0, (3.18)
∑

i in Cj

Xij [āj + b̄jXij − v̄i]+λ1NjX·j + λ2Nj [b̄j varj(Xij) +X·j(āj + b̄jX·j)] = 0, (3.19)

or equivalently, for each j in S,

λ1 + (1 + λ2)(āj + b̄jX·j) = avej(v̄i), (3.18)′

(1 + λ2)b̄j varj(Xij) = covj(v̄i,Xij). (3.19)′

Compare the Lagrangian multipliers here with the particular solution as below (3.5) with A = λ1

and B = 1 + λ2.
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What now follows amplifies remarks30 in (I) concerning the relative sizes of the least squares
(LS) estimators b̄j of βj . Assume without loss of generality that the relations (3.6) hold and that
LS estimators {(āj , b̄j), v̄i} have been determined satisfying (3.3)–(3.5) subject to the constraints
(3.10) and (3.11). What then is

E(Ȳij) = E(āj + b̄jXij) = E(āj) + E(b̄j)vi ?

Observe that for large Nj ,

varj(Xij) ≈ varj(vi) + σ2
j ,

covj(v̄i,Xij) = covj

( ∑

k in Si

(āk + b̄kXik)/ni , Xij

)

= covj

( ∑

k in Si

(āk + b̄kvi + b̄keik)/ni , vi + eij

)

≈ avej
(
avei(b̄k)

)
varj(vi) + b̄jσ

2
j /n

where 1/n = aveall(1/ni). Consequently,

b̄j ≈
avej(avei(b̄k)) + b̄j/(nΓj)

(λ2 + 1)(1 + 1/Γj)
(3.20)

where
Γj = varj(vi)/σ

2
j . (3.21)

In practice, covj(v̄i, Xij) > 0 so 1 + λ2 > 0, n ≈ 5, and Γj ≈ 3 to 6. Noting that E(b̄j) = 1
for unbiased b̄j , we ask how much does b̄j then differ from 1? Consider two scenarios. First,
suppose the iterated average in (3.20) equals 1; this requires 1+λ2 ≈ 5

6 and the range for b̄j , which
is then a function of Γj , is about 0.96 to 1.07. For the second scenario, noting that it tends to be
the case that students have more courses with Γk in common, and hence b̄k in common, replace the
double average by 1

2 (1+ b̄j); using 1+λ2 ≈ 5
6 again, b̄j is now about 0.92 to 1.14. In either case, the

assertion at (3.7) is supported, and it is supported more strongly by the example involving what
appear to be the more realistic approximations.

3.3. Estimation via mean and variance equating

Suppose given just two sets of scores, {Xi0} and {Xi1} say, and suppose that the latter set is
such that, after some unknown linear transformation as at (1.1), the resulting scores {Yi1} have the
same structure (3.6) as {Xi0} with Var(Xi0 − vi) = Var(Yi1− vi) for all i. In this bivariate context,
the following estimation procedure is asymptotically appropriate, remaining so in the multivariate
context provided that the variance terms σ2

j are constant for all j, a condition which is not met in
practice.

Notwithstanding the absence of such justification in terms of consistency with any model, it
has been common practice to use as estimators of {(αj , βj), vi} the attempted “solution” to the
set of equations

¯̄vi = avei(¯̄aj +
¯̄bjXij), (3.22)

¯̄bj =
( varj(¯̄vi)

varj(Xij)

)1/2

=
s.d.j(¯̄vj)

s.d.j(Xij)
, (3.23)

¯̄aj +
¯̄bjX·j = avej(¯̄vi). (3.24)

30 Masters and Beswick (1986), in quoting remarks from (I) about least squares estimators at their §2.49,
erroneously inferred that they apply to method-of-moment estimators.
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Because the ratio at (3.23) < 1, both in theory and in practice, these equations when iterated
converge to the degenerate (null) solution. This inconsistency has been resolved in practice by

fixing the estimated scale parameters ¯̄bj after one or two iterations and determining ¯̄aj for such

fixed ¯̄bj . In view of the invariance properties around (1.14) and (3.5), an alternative is to impose
one of the sets of conditions at [1] and [2] above.

Provided now that both σ2
j and varj(vi) are independent of j, the procedure is consistent with

the model as outlined. To see this, observe as earlier that if any consistent non-degenerate solution
of these equations exists, then a family of such solutions will exist consistent with the invariance
property already noted.

Next, suppose as earlier that the data set is generated as at (3.6). Then for

E( ¯̄Y ij) ≡ E(¯̄aj) + E(¯̄bj)vi ,

it again suffices to consider just the scale parameter estimator. For large Nj , much as in Section
3.2, (3.9) holds while

varj(¯̄vi) = varj

( ∑

k in Si

(¯̄ak + ¯̄bkXik)/ni

)
= varj

( ∑

k in Si

(¯̄ak + ¯̄bkvi +
¯̄bkeik)/ni

)

≈ avej{[avei(¯̄bk)]2} varj(vi) + avej [avei(
¯̄b
2

kσ
2
k)]/n .

Consequently,

¯̄b
2

j ≈ avej{[avei(¯̄bk)]2}[1 + 1/(nΓj)]

1 + 1/Γj
(3.25)

and, as in the previous section, ¯̄bj again varies with Γj , and in general is asymptotically biased
on each side of 1. However, the bias is about half that of using LS estimators, so this method is
preferable to LS estimation.

3.4. Method of Moments estimation

Refer back to the equations (2.2)–(2.7) where it was noted that, when (2.1) holds,

E(αj + βj avej(Xij)) = avej(vi), (3.26)

E(β2
j varj(Xij)) = varj(vi) + σ2

j , (3.27)

E(avei(αk + βkXik)) = vi . (3.28)

Furthermore, from vi(αj + βjXij) = v2i + vieij we have

E(βj covj(vi,Xij)) = varj(vi). (3.29)

Method of moment estimation entails replacing the unknown parameters in (3.26)–(3.29) by their

estimators {(ãj , b̃j), ṽi} say, and solving for them. Again, since as earlier the equations are no
longer linear in the unknowns, an iterative solution scheme is adopted, of which a more extended
account with a particular data set has been detailed in Daley (1987). For this, it is not necessary
to use (3.27) other than to estimate σ2

j after finding all the other parameters, that is, the method

of moment estimators {(ãj , b̃j), ṽi} satisfy the equations

ãj + b̃j avej(Xij) = avej(ṽi), (3.30)

b̃j covj(ṽi, Xij) = varj(ṽi), (3.31)

ṽi = avei(ãk + b̃kXik); (3.32)
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the (biased) estimator s̃2j of σ2
j is then given by

s̃2j = b̃2j varj(Xij)− varj(ṽi). (3.33)

In practice, initial estimates such as (αj , βj) = (0, 1) are taken and successively iterated through
(3.32), (3.31), and (3.30), as a perturbation analysis shows that under the conditions usually en-
countered, such a scheme then has satisfactory convergence properties.

To study the bias properties of the estimators of {βj} it again entails no loss of generality to
assume that (3.6) holds. Then, asymptotically as before,

varj(ṽi) = varj

( ∑

k in Si

ãk + b̃kXik

ni

)
= varj

( ∑

k in Si

ãk + b̃kvi + b̃keik
ni

)

≈ avej{[avei (̃bk)]2} varj(vi) +
avej [avei(̃b

2
kσ

2
k)]

n
, (3.34)

covj(ṽi,Xij) = covj

( ∑

k in Si

ãk + b̃kXik

ni
, Xij

)
= covj

( ∑

k in Si

ãk + b̃kvi + b̃keik
ni

, vi + eij

)

= avej [avei(̃bk)] varj(vi) +
b̃jσ

2
j

n
. (3.35)

Thus,

b̃j ≈
avej [avei(̃bk)]

2 varj(vi) + avej [avei(̃b
2
kσ

2
k)]/n

avej [avei(̃bk)] varj(vi) + b̃jσ2
j /n

, (3.36)

which is closer to being unbiased than either of the two previous estimators. In particular, it is
much less affected by variability of Γj . Note also that

Var(ṽi) = Var
( ∑

k in Si

ãk + b̃kvi + b̃keik
ni

)

≈ Var
( ∑

k in Si

ãk + b̃kvi
ni

)
+

∑

k in Si

b̃2kσ
2
k

n2
i

= O(N−1) + n−1
i avei(̃b

2
kσ

2
k) . (3.37)

3.5. External reference measure

Suppose finally that a further set of scores {Vi} is provided as estimators of {vi} , so that

Vi = vi + eiV (3.38)

where E(eiV ) = 0, E(e2iV ) = σ2
V , cov(vi, eiV ) = 0. It has been common in the educational measure-

ment literature to use {Vi} for “reference score equating” by requiring that

avej(Yij) = avej(Vi), varj(Yij) = var(Vi), (3.39)

in spite of its being known that biased estimators of the scale parameter βj then ensue (see e.g.
Cooney (1974, 1977), Hasofer (1977), and Potthoff (1982)), largely as a result it would appear that
a model such as (2.1) was not in view, and in particular there was no suggestion of an approach via
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the estimation of vi. In view of the model assumptions, equations (3.39) are equivalent to assuming
that σ2

j = σ2
V for each j concerned. This assumption is similar to that of the mean and variance

equating estimation procedure already outlined. On the one hand, it recognizes that both sets of
scores {Xij} and {Vi} are subject to error (i.e., imprecise determination), whether coming from
model-fitting or actual measurement or both. On the other hand, it assumes that these errors are
of the same size for all scores, whether from courses or the reference test, when in practice these are
known to vary considerably (cf. the range 3 to 6 for Γj ; for evidence, see Daley (1985) and Daley
& Eyland (1987)).

Observe also that the error variance of the estimator is now proportional to σ2
V /Nj rather

than avej [avei(σ
2
k)]/n ≈ σ2

j /(nNj), and the increases from both σ2
j < σ2

V and 1/n < 1 introduce
appreciable errors into the estimation of vi unless Nj is large.

Of even more concern is that estimates of the location parameters αj are now prone to bias
within the error variables eiV . Broadly speaking these can be regarded as cultural biases, as for
example concerning ethnicity and gender with SAT scores in USA and of gender in both Australia
and UK (MATHEF (1986) refers to a survey paper manuscript of Daley).

3.6. Which estimation procedure?

In terms of precision of estimates, it is unquestionably the case that any of the other course score
procedures of sections 3.2 to 3.4 is preferable to the external reference measure procedure of section
3.5. This is a simple consequence of the fact that, if a parameter vi is estimated by several measures,
and a measurement error (or, errors in variables) model is appropriate, then information on the
parameter is derived better from a reasonable combination of all the observations contributing more
or less equally rather than relying on a single set of observations. Within this group of procedures,
the criterion of unbiasedness of the scale parameters {βj}, which is relevant in the tails of the
distribution of {vi} though less critical than unbiasedness of the location parameters {αj}, means
the method of moment procedure of section 3.4 is to be preferred.

It is possible in principle to investigate these methods via either or both of Monte Carlo
methods and resampling procedures. The major practical problem associated with using the former
is to construct a data set consistent with both the model and the pattern of courses Si taken by
students in relation to their general measures vi. One solution is to use the estimates of both {vi}
and {σ2

j } from a data set (e.g., as from the method of moment procedure), and replace the observed
errors by simulated values {e′ij} which should then be reasonably independent. For the latter, jack-
knife estimates of Var(vi) for example may be appropriate through the use of a common set of
subsamples for different estimation procedures.

The estimation procedures of sections 3.2 to 3.4 can also be used in conjunction with an
external reference measure such as {Vi} by regarding the latter as a set of scores from some course,
as for example regarding it as the course s as under the constraint [1] above (3.10). Such a procedure
was adopted in the analyses to which brief reference is made in Chapter 5 of MATHEF (1986).

The one-factor model and its associated estimation procedures can be used on subsets of
courses when the latter are chosen by some external prescriptive criteria. For example, ad hoc
analyses have been performed on classifying courses j in S as lying in either a humanities (verbal)
domain or a science and mathematics (quantitative) domain, and a procedure similar to that of
section 3.5 followed within each of the two resulting subsets, whereas what has been sketched in
section 3.4 would be much more appropriate. Again, all that is being reflected here is a lack of
understanding of the logical need for any algorithm to be governed by a mathematical model that
describes the context of the information being processed by the algorithm in such a way that, ideally,
the principles underlying the algorithm and its application to the model are mutually consistent,
optimal, and consistent with the data.
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4. One-factor model procedures used on a two-factor model

It has been assumed so far that the one-factor model is a satisfactory description of the data in
the sense that the sets of residuals {eij} are mutually uncorrelated. (While we stated an assumption
of independence at (2.2), all we have used, except for the maximum likelihood procedure which we
have rejected, is this zero correlation property.) Since a ranking is a one-dimensional concept and
the parameters {vi} correspond in a general sense to a first principal component of the multivariate
set {Yij}, i.e., to the dominant component, it is arguable that at this stage it is enough to check
that the resulting error terms are uncorrelated.

In practice, the data sets are such that a second component is always observable, and a third is
also observable when certain external reference measures are used. It is therefore proper to consider
the one-factor model estimation procedures in relation to these more detailed models. In this section
we consider the following two-factor model which corresponds to the practical observation that many
students tend to be relatively better in one of the two areas defined by a preponderance of verbal
skills for one and quantitative skills for the other. (In more colloquial terms, students tend to be
better in either the humanities area or the science and mathematics area.) Suppose then that we
retain (1.1) but that instead of (2.1) we have

Yij = vi1 + γjvi2 + e′ij (4.1)

for some family of constants {γj}, general achievement measures {vi1}, contrast measures {vi2},
and residual variables {e′ij}, such that over their common sub-candidatures, {vi1} and {vi2} are
mutually uncorrelated and uncorrelated also with {e′ij}. It is immediately recognizable that, in
addition to the indeterminate parameters A, B as at (1.14) and (1.15) for the model at (2.1), there
is another indeterminacy in the model at (4.1) in that the quantities {Cγj} and {C−1vi2} yield the
same description of any data set.

We content ourselves for the time being with observing that if (4.1) holds and we form the
estimator of Yi· at (1.10) by

∑

j in Si

Yij/ni =
∑

j in Si

(vi1 + γjvi2 + e′ij)/ni

= vi1 +

∑
j in Si

γj

ni
vi2 +

∑
j in Si

e′ij
ni

≡ vi1 + γ′
i·|vi2|+ e′i· say, (4.2)

then again the dominant component is vi1 but, typically, because a student if anything tends to
have a majority of courses from the area of relative strength in terms of the contrast measure vi2,
this dominant component is increased by a fraction of the contrast measure. (It is tacitly being
assumed here that the coefficients γj lie in the range (−1, 1) or thereabouts, by appropriate choice
of the arbitrary constant C.) The last statement means that, no matter what convention has been
adopted with regard to the sign of vi2, each student will tend to have a majority of courses for
which γj has the same sign as vi2, and thus, taking

γ′
i· ≡

∣∣∣
∑

j in Si

γj/ni

∣∣∣ =
∣∣ ave′i(γj)

∣∣,

the second term on the right-hand side of (4.2) is (usually) positive as implied.
The representation (4.2) makes little sense until we have some idea of the magnitude of

the quantities involved. Our experience with data from three Australian sources indicates that
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varall(vi1) : varall(vi2) ≈ 4 : 1 or larger, that γ′
i ≈ 0.2 to 0.5 , and that Var(e′i·) ≈ varall(vi1)/10 or

less, so that the measures Yi· can certainly be regarded as providing a classification of the population
into several subgroups if that is required.

Questions of misclassification rates have been canvassed in Daley (1988).
A major benefit of having the representation (4.2) is that it explains observed covariances

covjk(Yij , Yik) better than the one-factor model (2.1). To show this, we must make some assump-
tions that approximate the participation rates of students in various courses. To this end, assume
that every student takes courses j = 1 and 2, these common courses being one in each of the major
areas (e.g. every student takes English and Mathematics), that each student then takes three fur-
ther courses in his area of strength, and that γ′

i· ≈ |1.0 − 1.0 + 3(0.5)|/5 = 0.3. Suppose also that
60% of students are in the area of course 1 and 40% in the other. (We could equally use 50% in
each: we choose otherwise in order to illustrate effects of imbalance, of which the first is that the
representation at (4.2) must be modified by replacing |vi2| by the top 60% of vi2 for the area of
course 1, and the top 40% of −vi2 for the area of course 2.) We shall suppose that the raw scores
Xij have the representation at (4.2), much as we made the assumption about βj = 1 at (3.6) in
our study of biases of bj in section 3, with γ1 = −γ2 = 1 for the sake of definiteness. We have

∑
i vi1 = 0 =

∑
i vi2 = ave1(Xi1) = ave2(Xi2),

var1(Xi1) = var1(vi1) + var1(vi2) + Var(e′i1),

var2(Xi2) = var1(vi1) + var1(vi2) + Var(e′i2);

assuming for the sake of argument that the measures {vi2} have the distribution N(0, s22) and that
the 60% group takes courses 3, 5, and another, and that the 40% group takes courses 4, 6, and
another, we have also

ave3(Xi3) = ave3(vi1) +
1
2 ave{top 60% of vi2}+ 0

= ave3(vi1) +
1
2
(0.644s2),

ave4(Xi4) = ave4(vi1) +
1
2 ave{top 40% of − vi2}+ 0

= ave3(vi1) +
1
2
(0.965s2).

var3(Xi3) = var3(vi1) +
1
4 var{top 60% of vi2}+Var(e′i3)

= var3(vi1) +
1
4 (0.650s2)

2 +Var(e′i3),

var4(Xi4) = var4(vi1) +
1
4
var{top 40%of − vi2}+Var(e′i4)

= var4(vi1) +
1
4
(0.560s2)

2 +Var(e′i4).

cov12(Xi1, Xi2) = cov12(vi1 + vi2 + e′i1, vi1 − vi2 + e′i2)

= var1(vi1)− var1(vi2),

cov13(Xi1, Xi3) = cov13(vi1 + vi2 + e′i1, {vi1 + 1
2vi2 + e′i3 : top 60% of vi2})

= var3(vi1) +
1
2 var3(vi2)

= var3(vi1) +
1
2
(0.650s2)

2 ,

cov24(Xi2, Xi4) = var4(vi1) +
1
2
(0.560s2)

2,

cov14(Xi1, Xi4) = cov14(vi1 + vi2 + e′i1, {vi1 − 1
2vi2 + e′i4 : top 40% of − vi2})

= var4(vi1)− 1
2 var4{vi2 : top 40% of − vi2}

= var4(vi1)− 1
2
(0.560s2)

2 ,

cov23(Xi2, Xi3) = var3(vi1)− 1
2 (0.650s2)

2 ,

cov35(Xi3, Xi5) = var3(vi1) +
1
4 (0.650s2)

2 ,

cov46(Xi4, Xi6) = var4(vi1) +
1
4
(0.560s2)

2 .
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To investigate the effect of using the method of moment estimation procedure on the data
as though they conform to the one-factor model, consider the result of calculation after the first
iterative step:

ave1(Xi·) = ave1(vi1) + (0.3) × (0.773s2)

= 0.232s2 = ave2(Xi·),

var1(Xi·) = var1(vi1) + (0.3)2 × var{top 60% of vi2 and top 40% of − vi2}+Var(e′i·)

= var1(vi1) + (0.3)2 × (0.403s2)
2 +Var(e′i·) = var2(Xi·),

ave3(Xi·) = ave3(vi1) + (0.3) × (0.644s2),

var3(Xi·) = var3(vi1) + (0.3)2 × (0.650s2)
2 +Var(e′i·),

ave4(Xi·) = ave4(vi1) + (0.3) × (0.965s2),

var4(Xi·) = var4(vi1) + (0.3)2 × (0.560s2)
2 +Var(e′i·),

cov(Xi·,Xi1) = var1(vi1) + (0.3) × cov1({top 60% of vi2 and top 40% of − vi2}, vi2) + 1
5Var(e

′
i1)

= var1(vi1) + (0.3) × (0.004s22) + (0.2) ×Var(e′i1),

cov(Xi·,Xi2) = var1(vi1)− (0.3) × (0.004s22 ) + (0.2) ×Var(e′i2),

cov(Xi·,Xi3) = var3(vi1) + (0.15) × cov3(vi2, {top 60% of vi2}) + (0.2) ×Var(e′i3)

= var3(vi1) + (0.15) × (0.650s2)
2 + (0.2) ×Var(e′i3),

cov(Xi·,Xi4) = var4(vi1) + (0.15) × (0.560s2)
2 + (0.2) ×Var(e′i4).

As the first iteration approximation to b1 we have the ratio

var1(vi1) + 0.0361s22 +Var(e′1)

var1(vi1) + 0.001s22 + (0.2)Var(e′i1)]
.

Assuming that Var(e′1) ≈ 1
5Var(e

′
i1) ≈ 1

5s
2
2 and that s22/ var1(vi1) ≈ 1

5 , this ratio ≈ 1.007, indicating
that the effect of assuming that (4.2) holds with Xij rather than Yij introduces a bias that is smaller
than any of the biases considered in connection with estimates of βj in section 3. Making similar
assumptions in connection with the other courses leads to ratios that are likewise within 1% of 1.00.
Within the simplified course choices and using the typical values of variances for the
ratios just considered, the method of moment estimation procedure derived from a
one-factor model produces estimators for the two-factor model that are somewhat
smaller than the bias terms canvassed for other course score estimation procedures in
section 3. Accordingly, on these theoretical grounds, the one-factor model constructed
via method of moment estimation produces adequate estimators even for the two-
factor model as above.

5. Reference test factor

It has long been known (Anastasi (1958) wrote of studies going back as far as 1929) that
the relative performance of mid-teenage boys and girls on standardized tests such as SAT tests in
USA differs from their relative performance under class-room assessment practices. Such differences
would appear to be culturally based, or if not, a gender-linked interaction of the psyche with the
mode of assessment in that multiple choice tests are predominantly used in standardized testing
but not in most class-room based assessments. The presence of any such interaction is presumably
not a gender trait per se but merely a gender-linked trait, in which case, if there exist at least two
sets of pairs of assessments that can be regarded as being in similar areas, one from a standardized
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test or other multiple choice based test and the other from the classroom, then it should be possible
to discern whether over all individuals it is feasible to postulate an analogue of (4.1) in the form

Yij(δj) = vi1 + γjvi2 + δj∆i + e′′ij (5.1)

where δj = +1 or −1 and ∆i denotes the relative performance of individual i as measured under
two modes of assessment in course j.

Equation (5.1) has the consequence that if for example courses j = 1 and 2 have γj = +1 and
−1 respectively, then the four sets of scores {Yi1(1)}, {Yi1(−1)}, {Yi2(1)}, {Yi2(−1)}, yield

1
4
[Yi1(1) + Yi2(1) + Yi1(−1) + Yi2(−1)] = vi1 + e′′i (1), (5.2)

1
4 [Yi1(1) − Yi2(1) + Yi1(−1)− Yi2(−1)] = vi2 + e′′i (2), (5.3)
1
4 [Yi1(1) + Yi2(1)− Yi1(−1)− Yi2(−1)] = ∆i + e′′i (3), (5.4)
1
4
[Yi1(1) − Yi2(1)− Yi1(−1) + Yi2(−1)] = e′′i (4), (5.5)

where on the assumption that the errors e′′i (·) are uncorrelated r.v.s with variances σ2
1 , . . . , σ

2
4

say, the sets of error terms {e′′i (r) : i = 1, . . . , N ; r = 1, . . . , 4} are mutually uncorrelated with a
common variance 1

4σ
2 ≡ (σ2

1 + · · ·+ σ2
4)/16. It is clear that some test of the model (5.1) is effected

by forming the four linear contrasts (5.2)–(5.5) and finding their sums of squares, for which the
respective expectations are

var1(vi1) +
1
4σ

2, s22 +
1
4σ

2, var1(∆i) +
1
4σ

2, and 1
4σ

2. (5.6)

Comparison of the observed mean squares with these expected mean squares, and in particular, that
the last mean square is significantly smaller than any of the others, is evidence that (5.1) holds.
Another test is effected by looking at the correlations of the sets of right-hand sides: near-zero
correlations constitute additional evidence that (5.1) holds, being independent of the mean square
evidence.

What is almost universally reported is that boys and girls differ in their relative abilities in
the quantitative and verbal skill areas. In a report that admitted to having been written hastily,
Masters and Beswick (1986) suggested and attempted to supply evidence that the gender-linked
difference noted onwards from 1929 is attributable to an interaction of the relative participation
rates of boys and girls in these two areas. This suggestion can be tested more thoroughly than in
Masters and Beswick’s analyses by using the model (5.1) in the following ways:

(1) Check the analyses based on (5.2)–(5.5) within each sex. If similar second-order properties
are observed then it is evidence that the model (5.1) holds as a description of the scores of
individuals, and that any systematic differences between subgroups formed on the basis of
gender are merely gender-linked effects.

(2) Investigate the gender-difference of the averages of {Yij(1)} and {Yij(−1)} for each of j = 1 and
2. If these gender-based differences are of similar sign and (better still) size for the two course
areas, then it is evidence that the model-based averages of ∆i within each sex are different.
Moreover, they are not related to the verbal/quantitative contrast factors {vi2}. (Such evidence
was supplied to the Committee that wrote MATHEF (1986) but not reported there.)

(3) Note in particular the correlations between the contrasts (5.3) and (5.4). If the gender-based
differences observed as mode of assessment effects are attributable to verbal/quantitative con-
trast factors, then these correlations should differ from zero.
The presence of the factor {∆i} is of considerable concern for its effects, not only on the

reference score equating procedure of section 3.5, but also when used in conjunction with any of
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the other course score estimation procedures of sections 3.2 to 3.4 in which scores such as {Ṽi} at
(3.38) are used as the scores of the particular course s for which (αs, βs) = (0, 1) as at [1] above
(3.10). This is particularly so whenever the mean squares σ2

∆(j) ≡ varj(∆i) differ considerably from
the quantities σ2

j of (2.2) because the estimators bj are affected by the ratio

varj(vi) + σ2
j

varj(vi) + σ2
∆(j)

=
1 + 1/Γj

1 + 1/Γ∆(j)
. (5.7)

So soon as Γ∆(j) is smaller than the general range 3 to 6 for Γj as at (3.21), distortion of the scale
estimators bj occurs and biases the contribution of the scores Yij from the courses j concerned. It
is therefore appropriate to ensure that any sub-populations whose reference test scores are used in
order to establish some form of comparability across groups which otherwise have vacuous common
sub-candidatures Cjk j, k 6= s), have their ratios Γ∆(·) (over the sub-population concerned) within
the range 3 to 6. Put another way, the estimate of the mean square σ2

∆ within a sub-population can
be considerably in excess of the purported measurement error associated with the reference test,
and hence indicate a significant presence of mode of assessment differences {∆i}; when this is so, it
is essential to consider methods of reducing this observed mean square to the order of magnitude
of the measurement error so as to comply with the fundamental assumption that (3.38) holds with
measurement error only.
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Appendix 2

Different Sex Differences from Different Modes of Assessment:

Common Experiences in Three Countries

D.J. Daley

Statistics Research Section

School of Mathematical Sciences

The Australian National University

Summary

The paper reviews literature from USA, UK and Australia, all consistent
with assessment based on multiple-choice methods yielding higher average male
than female scores compared with teacher-assessed or external examination
scores. The effect is such as to change the male : female ratio in the top half of
the scores from 50 : 50 up to 60 : 40 or even more excessive.

§1. Introduction
The object of this paper is to summarize, with whatever quantitative detail can be given, a

range of literature relating to a mode-of-assessment gender difference. What is meant by this is the
following: suppose that a mixed-sex group of students finishing secondary school (age say 16 to 19)
is assessed as to specific academic ability or achievement by two measures, one a multiple choice test
and the other an examination or equivalent assessment of work requiring synthesis like an essay or
problem-solution or homework assignment of similar format. Then the resulting assessments, when
expressed on a scale with unit standard deviation, if averaged for each sex within each style of
assessment, yield as gender differences quantities of which the male minus female gender difference
on the multiple choice assessment is higher than the other-assessment gender difference by about
0.2 to 0.5 units.

It is quite feasible for the correlation of the two assessments to be quite high (e.g. 0.8 to
0.9), and yet for such a bias between the two assessments to exist and to be of the indicated size,
having only a negligible effect on the correlation. This comment, that sizable bias and high validity
may coexist, is known. (Suppose that the correlation, in the absence of bias, equals r. Then, on
introducing a bias of size 2b (so b equals 0.1 to 0.25 in the example above), the correlation is reduced
to (r − b2)/(1 + b2) ≈ r − (1 + r)b2 for small b, so for r = 0.7 and b in the indicated range, r is
reduced from 0.7 to between 0.683 and 0.6).

131
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§2. Some experience in USA

§2.1.
Breland & Griswold (1982) used data based on about 10,000 students entering Californian

State Universities and Colleges in Fall 1977 and administered (i) that system’s various English
Placement Tests (EPT’s), having already sat (ii) the Scholastic Aptitude Test (SAT) and Test
of Standard Written English (TSWE). All of these except for the EPT Essay Test are multiple
choice tests. The Essay Test is graded on a six-point scale by two readers, resulting in a score on
a scale from 2 to 12 (with provision for a score from a third reader if the first two disagree by two
or more points). Correlations between EPT-Essay scores and each of the scores listed below were
in the range 0.43 to 0.48 (males) and 0.49 to 0.51 (females). Gender differences of the scores in
standardized units are as shown in Table 2.1.

Breland & Griswold reported that the effect of a bias of EPT-Essay relative to any of the other
tests, persists within each of four sub-ranges of the scores for each of SAT-Verbal and TSWE. They
commented that

“reviews (Breland, 1979; Linn, 1973) have suggested that, generally, women are underestimated
by traditional academic tests. In other words, these studies conclude that women perform better
in college . . . than traditional tests would predict.”

TABLE 2.1

Gender differences of EPT-Essay Test and some other tests.

Test Gender Difference Difference of

Test EPT-Essay Test Gender Diffs.

EPT-Reading 0.01 –0.36 0.37

EPT-Sentence

Construction –0.05 –0.36 0.32

EPT-Logic 0.04 –0.36 0.40

SAT-Verbal 0.10 –0.36 0.46

TSWE –0.09 –0.36 0.27

Source: Adapted from Total, Men and Women entries in

Table 3 of Breland & Griswold (1982).

Linn (1973), referring to an April 1972 conference paper of C.L. Thomas, refers to [undergrad-
uate] college grade point averages (GPA’s) for men and women in relation to their mean SAT’s,
noting that the regression equations predicting GPA’s from SAT’s in all 10 colleges underpredict
the women’s performance. Linn quotes a comment from the College Board Commission on Tests
as being seemingly in approval of the desirability of the tests that they

“tend to reduce the advantage that girls enjoy in grade school work, since males and females have
roughly the same mean scores on the SAT.”

What is really at issue here is the implied “correctness” of SAT as measuring Scholastic Aptitude
as opposed to the grade school or college assessments being “correct”.

It is not easy to infer from Linn’s paper what is the size of the bias between the two measures.
Using GPA standard deviation of 0.63 as representative of the 10 colleges, assuming a correlation
of 0.6 between GPA and mean SAT, the median difference (of the 10 colleges) between predicted
male and female GPA which Linn gives as 0.36 becomes about 0.34 (= 0.36(0.6/0.63)) but note
the use of guesstimates!!
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Breland (1979), like Anastasi (1976) but unlike Anastasi (1958), is concerned almost entirely
with an extensive review of literature that gives correlations between test scores like SAT and
both high school and college GPA’s, especially with regard to ethnic sub-groups of the population.
There is little work on the difference of gender differences we note here, except for references to
Linn (1973) and an American College Test (ACT) Program study c.1973 of data from 19 colleges
where

“ACT scores and high school grades were used to predict first-semester college GPA’s . . .The
performance of women in the first semester of college was almost always under-predicted.”

It is worth noting that Breland’s (1979) review was published by the College Entrance Examination
Board which two years earlier wrote (in a document attracting some public prominence), on the
topic of sex differences (Wirtz, 1977, p.16):

“Women and men have traditionally averaged about the same scores on the Verbal portion of
the SAT, but there has been a marked difference in the Mathematical Averages. In 1960 the
Mathematical means . . .were 465 for women, 500 for men. Twelve years later, the average for
women was virtually unchanged but the average for men had dropped by 14 points (to 506).
The 1977 Mathematics figures are 445 for women, 497 for men. Women represented 42.7% of the
SAT-taking group in 1960 and 47.5% in 1970.

The suggestion is sometimes made that the SAT is culturally biased. . . . These same dif-
ferences show up in most other standardized tests . . .The test design procedures followed by
ETS [ensure] that special efforts have been made to avoid the suggested prejudices. Cultural bias
would appear to be more likely to affect the Verbal part than it would the Mathematical part of
the test; but the differences between the averages for various ethnic groups are larger for Mathe-
matical scores than they are for verbal scores. Although the available information is incomplete,
the predictive validity of the SAT appears to be substantially the same for students in different
ethnic groups and for women and men.

The significant ‘biases’ involved here clearly go much deeper and concern the society much
more than the tests . . . ”

Indeed, assuming that “predictive validity” here simply refers to correlation, such validity is hardly
affected by bias (see §1 above).

“That women score lower than men on the Mathematical sections of the SAT almost unquestion-
ably reflects more than anything else the traditional sex stereotyping of career opportunities and
expectations.”

Presumably, Breland, who prepared various research papers as background for Wirtz (1977),
in preparing the 1979 review, was filling some of the void noted above by the CEEB. It is worth
noting the caution exercised by the CEEB (p.17):

“Realizing that even recognition of . . . group differentials risks irresponsible headlines, . . .we note
the figures . . .Women’s larger participation could be identified with [about 4 to 5 points] of the
drop in the Mathematical average, but with none of the decline in Verbal scores.”

The CEEB’s reticence to associate changes in SAT average scores with changing patterns
of composition of the population taking the test, contrasts with stronger emphasis on changing
retention rates affecting sex differences in Australian SAT scores (Adams, 1984).

§2.2.
Stockard & Wood (1984) used scores from the California Test of Mental Maturity (which

“as with most intelligence tests that differentiate between the sexes were omitted so that the norms
show substantially equal total scores for females and males),”

and yearly grade averages (7th to 12th grades) and cumulative GPA (9th to 12th grade), excluding
maths. grades beyond the 10th grade. Mean GPA’s were calculated in quartiles and deciles of the
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7th grade CTMM scores. Assuming equal CTMM average male and female scores at 7th grade,
the mean GPA for females exceeded that for males by about 0.20/0.52 = 0.38 standardized units.
The effect persisted over the range of 7th grade CTMM scores, and within both ‘working class’
and ‘middle class’ students (a sample size of 371 students’ scores who attended the school involved
throughout). References to some previous work is summarized as

“because the sexes generally score equally well on standardized achievement and intelligence tests,
boys are defined as being underachievers in school more often than girls”

(because females receive higher grades than males throughout the grade school, high school and
college). Certainly, such a view would appear to be folkloric amongst educational psychologists in
the early ’70’s, for the statement:

“It is known that the average level of performance in college is higher for females tnan for males
who score the same on the same SAT exam,”

is to be found in an undergraduate text on Educational Psychology (Liebert & Poulos, 1973. p.344).
This last statement could well reflect the writing of Anastasi (1958) who wrote (e.g., p.494)

“girls generally obtain better grades than boys, even though the latter are a more select group and
make a better showing on achievement tests.”

Such folklore is disputed in Jensen (1980) who attempted to refute it on the basis of the sex
difference in the types of courses taken by men and women. Jensen wrote (p.629) of his “hunch”,
and referring to Linn’s (1973) work,

“the fact is, however, that this apparent sex bias of the SAT is most probably entirely illusory, a
mere artifact of the failure to control for differences in the difficulty levels and grading standards
of the many college courses that enroll markedly disproportionate numbers of men and women.”

He quoted a study of Hewitt & Goldman (1975) as concluding that

“much if not most of the apparent ‘overachievement’ of college women is accounted for by sex
differences in major field choice.”

This appears to be the major basis for his rejecting the notion of sex bias in tests relative to
college or high school grades. If so, then his conclusion is not supported by close examination of
the overwhelming majority of data in the cited paper. Moreover, the resultant over-achievement
calculated by Hewitt & Goldman is significant at the 5% level for one institution and 1% level
for the other three; the data can be interpreted as yielding differences of gender differences, in
standardized units as used in the present paper, of approximately 0.36, 0.11, 0.24 and 0.25.

§2.3.
Pallas & Alexander (1983), while largely concerned with relating observed SAT-M scores to

9th grade SCAT-Q scores and a plethora of other variables representing high school coursework
and background, include data giving sex differences on SAT-M of 0.36 points and MATHGPA of
−0.14 points (and the assumption of unit standard deviation in such scores), leading to an overall
difference in gender differences of 0.50. It could be argued that MATHGPA represents an averaged
assessment over grades 9–12, and that a more appropriate comparison is thus with an average of
SAT-M (at 12th grade) and SCAT-Q (at 9th grade), in which case 0.36 is replaced by 0.18, and the
overall difference in the assessed gender differences is 0.32. (See SUBMITTED for further detail.)
The figure of 0.32 is similar to the figure of 0.38 in Stockard & Wood as above.



Reprint of Different sex differences from . . .modes of assessment: Common experiences in three countries 135

§2.4.
For all that it has a large annotated bibliography, and just for the decade or so starting c.1964,

Maccoby & Jacklin’s (1974) treatise is not much help in this present exercise. Their Table 4.1 gives
just two entries that are pertinent.

Monday et al. (1967) gave students the American College Test (ACT), and high school grades
for most of them were obtained. On the ACT, women had higher English scores, men had higher
mathematics, natural science, and total composite scores. Women’s high school grades were higher
than those of men.

Wyer (1967) used scores on ACT Service Entrance Exam. and their first-term freshman GPA’s.
No sex differences were noted.

Maccoby & Jacklin wrote (their p.135):

“It is well known that girls get better grades throughout their school years (see Maccoby (1966)
including its annotated bibliography) . . .We have seen that girls do not obtain high aptitude or
achievement test scores, taking all the subject-matter areas together. Hence their better grades
must reflect some combination of greater effort, greater interest, and better work habits.”

Sherman (1978), in her Chapter 3 in particular, notes that

“the most recent major review of the material, Maccoby & Jacklin (1974), is a work seriously
marred by conceptual, interpretive, and empirical errors”

and details both critical reviews and items with which she disagrees. Unfortunately, Sherman has
nothing further to add to the obvious question as to why cognitive functioning of the two sexes
may differ in a range of content areas with respect to style of assessment.

§2.5.
Veldman (1968) used a study of performance at the University of Texas and aptitude test

performance and found a sex-difference of 0.23 standardized units as used here. He concluded that

“(2) females achieved significantly higher grades relative to their aptitude test performance; (3)
self-reported attitudes to work made a substantial contribution to the prediction of grades even
when aptitudes were held constant; and (4) some of the sex differences in relative achievement
could be shown to overlap with attitudes to work.”

Caldwell & Hartnett (1967) wrote that

“the GPA in schools and colleges has long been considered advantageous to females. Studies going
back as far as 1929 reveal higher performance on school marks from elementary school through
college (Anastasi, 1958, pp.492–6) . . . This paper deals with a comparison of male and female
grades obtained from instructors in a variety of courses which have a built-in control for course
achievement. This control is a common final examination constructed by a skilled test specialist,
tailored to the course syllabus, approved by the department head, and generally demonstrated to
possess appropriate psychometric characteristics (e.g. high reliability, large number of discrimi-
nating items, etc.).”

The scores were reported on a 15 point scale (of which the standard deviation is not given; assume
below that it is in the range 2 to 3), and in four terms and in six subjects the differences of gender
differences (F – M)(Instructor – Test) are as listed in Table 2.2.

The average figure corresponds to 0.20 to 0.30 standardized units (in terms of estimated range
of the standard deviation). The authors noted

“the consistent advantage females have in Biology and Physical Science—two non-verbal courses
where essays typically play a minor part. On the other hand, in English—where instructors’
ratings might be expected to favor females because of typically superior penmanship, grammar
etc.—no such advantage is present.”
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TABLE 2.2

Gender difference of instructor v. test grade difference.

Term

Subject 1 2 3 4 Average

English 0.70 –0.02 0.25 –0.41 0.13

Behavioural Sci. 0.30 0.07 –0.16 –0.05 0.04

Biology 1.19 0.67 0.50 0.72 0.77

Physical Sci. 2.34 1.94 1.41 0.55 1.56

Mathematics 0.13 –0.13 0.77 –0.29 0.12

American Idea 0.15 0.89 1.14 1.60 0.95

Average 0.80 0.57 0.65 0.35 0.59

Source: Caldwell & Hartnett (1967).

§3. Some experience in UK

§3.1.
Murphy (1980) illustrates a comment in a working paper that the type of assessment techniques

used within individual examinations may lead to differential gender differences, by referring to ‘O’
level Geography exam. results of the Associated Examining Board (AEB). He first notes that the
differences in percentage of male and female candidates receiving A, B or C grades were in the
range 0 to 2% for the years 1970–76 inclusive, and 9 to 11% for 1977–79, the two different periods
corresponding to old syllabus and exam. (“written paper”), and new syllabus and exam. (both
objective test questions and old-style “written paper” questions). The differences in standardized
units of the male and female performances on the two parts of the paper in 1977–79 are as in
Table 3.1.

TABLE 3.1

Gender differences on parts of ‘O’ level AEB Exam.

Year Gender Differences Difference of

Objective test mark Written paper gender differences

1977 0.51 0.05 0.46

1978 0.53 0.07 0.46

1979 0.44 0.08 0.36

Source: By construction from data in Murphy (1980).

Murphy concluded:

“The possible advantages gained by male candidates when written examination papers are re-
placed by objective tests have been discussed elsewhere, by Murphy (1978) and Dwyer (1979). In
addition, this relative improvement in male performance has been noticed in a number of GCE
examinations, but there appears to be no obvious reason why male candidates should do better
on this form of assessment than on other forms (Murphy, 1978). The whole activity of studying
sex differences in cognitive functioning has not resulted in much in the way of clear-cut findings
(Maccoby & Jacklin, 1975; Peterson & Wittig, 1979) . . . One possible explanation for this partic-
ular sex difference manifestation in academic performance is the lower emphasis on verbal ability
in objective test papers, as compared with more conventional written papers . . . Examinations
data contain a wealth of information about the effect of sex differentiation within examination
papers themselves.”
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§3.2.
Hoste (1982) discusses an analysis of a biology examination for the Certificate of Secondary

Education (CSE), with a theory paper comprising some multiple choice questions, some requiring
sentence completion, making statements about labelled parts of diagrams, and short prose answers,
and a practical paper. Relative to ability on the paper as a whole, 26 of the 133 items on the whole
examination showed significant differences on performance between the sexes, 10 favouring boys
(of which 9 were in the practical and multiple choice sections of the exam.), and 16 favouring girls
(of which 15 were in the structured question section of the paper). There is not enough detail to
calculate a realistic ‘multiple choice’ question advantage to boys.

Hoste refers to other work as follows:

“Harding (1979) found that boys did better than girls on the multiple-choice section of the Nuffield
‘O’ level Chemistry and Physics papers. Girls on the other hand scored better on a ‘conventional’
Biology paper containing essay questions . . . [Carter (1952)] found that teachers’ rating of girls’
performance in algebra was higher than that of boys of equivalent ability as measured by an
attainment test. (Although it must be noted that an alternative explanation is as valid: that
the teachers’ ratings were accurate and the reference test, which was probably in multiple-choice
format, over-estimated boys’ attainments.) . . . [re the CSE Biology paper] it may be that the more
verbal format of the required answers gave them [the girls] the advantage in these questions.”

From the tone of his writing, I sense that Hoste is more guarded in the strength of his conclusion
than Murphy, though Hoste could have been influenced in this regard by the need for sex differences
at the item level needing to be larger than the global measures used by Murphy on the Geography
paper. Hoste concluded:

“Males showed better performance on some multiple-choice items, and females on some items which
required a verbal response. But these generalizations were often overridden when the subject-
matter had greater relevance to the sex concerned [i.e., a question–context effect].”

§3.3.
Wood (1978) reported that the gender difference in pass rates in the University of London

School Examination ‘O’ level English dropped from 22.2% in 1971 to 14.4% in 1972, coinciding
with the introduction in that year of a multiple-choice comprehension paper. [The difference of 8%
is about the same as the 9% change noted by Murphy in the Geography papers.] Wood wrote:

“Is this just a coincidence? The answer would seem to be ‘no’; our experience at the London board
is that when multiple choice is introduced into an examination the boys’ pass rate nearly always
improves noticeably relative to the girls’ pass rate, which may even decline. It does seem that
multiple choice both favours boys and disadvantages girls, although, of course, it could be argued
that essay tests have exactly the opposite effect.”

In an earlier paper, Wood (1976) discussed differential gender responses to multiple-choice
questions and “free response” questions in mathematics. A rough calculation suggests a differential
gender difference at least about 0.2 units.

§3.4.
In a feasibility study of using objective testing at 16+ in Geography (cf. §3.1 above), Wiegand

(1982) used a sample of 428 students from six schools.

“The boys scored more highly on the test, confirming the findings of other objective tests [reference
includes Murphy’s work], although this difference was not seen to be significant.”

This conclusion is ambiguous, to say the least.
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§4. Some Australian experience

Daley (1985) compares gender differences on the Australian SAT scores, and continuous as-
sessment scores aggregated into a Tertiary Entrance (TE) score. The differential gender difference
for the five years 1981-85 were 0.36, 0.53, 0.17, 0.23, 0.35 (the figures for 1984 and 1985 come from
Daley (personal communication)).

Each year, a new ASAT paper is devised, whereas the TE score and the components that make
it up are produced by at best a slowly changing procedure (as curriculum evolves and teachers
change). Thus, it is fair to conclude (as noted in Daley, 1985, and based on more than just one
piece of evidence) that the gender difference of ASAT scores changes with each paper — hardly a
surprising conclusion!!

Unpublished work of Daley that compares ASAT Verbal scores with English course scores,
and ASAT Quantitative scores with Mathematics scores, suggests comparable gender differences in
both these areas (personal communication).

§5. Quantifying the effects of “bias”

The object of this section is to illustrate numerically the effect of having a bias in one measure
relative to another. At the individual level, we denote scores on two assessments, both of which
have zero mean and unit standard deviation over the whole population, by Xi and Yi for individual
i, so that the true score model incorporating sex bias can be written

Yi − (error in Yi) = Xi − (error in Xi) ± b,

where one sign is taken for male, the other for female. Denoting the sample male and female averages
by XM , . . . , Y F , and assuming the sample error means to be negligibly small, it follows that

Y M − Y F = XM −XF + 2b.

In scores such as the SAT or those occurring in Murphy (1980) or Daley (1985), it is sufficient for
numerical work to assume that scores are normally distributed. Suppose that selection into another
educational course is based on an academic order of merit established by ranking the scores {Xi} or
{Yi}: when the cut-off point is the top 5% or 10% or . . . or when the ‘pass-rate’ coincides with the
top 50% of this order, what is the effect of the bias term b on the sex-ratio in this selected group?
In order to be definite, assume a 50 : 50 male : female ratio throughout a mixed-sex population on
the basis of the scores {Xi}. Then the entries in Table 5.1 show how the ratio changes when the bias
factor b is as listed, depending on the cut-off point. Observe that the higher up the order-of-merit
list is the cut-off, so the more pronounced is the effect of the bias on the proportion of the dominant
sex in the selected group.

To illustrate the use of Table 5.1, refer to Murphy’s example in section 3.1 above where a bias
of about 0.21 was observed over three years. Assuming the scores on the two parts of the paper are
weighted evenly, implies a bias overall of about 0.105 for the years 1977–79 compared to 1971–76,
so that if the pass level is at the 50% cut-off, and the sex-ratio in the pass group in 1971–76 was
50 : 50, then a shift to about 54.2 : 45.8 can be expected, i.e., a change of about 8.4%, which is
close to the observed figure of about 9%.

Another way of representing the effect is to use the recognition of the incorporation in Xi or
Yi of a measurement error term, and to calculate for an individual with true score at a cut-off level
the probability of inclusion in the selected group when the score used is subject to bias. To a first
order of approximation, such probabilities depend on the bias b and the size of the measurement
error, which size we indicate by the reliability coefficient, but do not depend on the cut-off level.
Obviously, the more reliable is the measure, so the more pronounced is the effect of any bias on an
individual with score on the borderline.
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TABLE 5.1

Percentage Proportion of dominant sex

above selection cut-off Ievels.

Bias b 0 .05 .10 .15 .20 .25 .30

Cut-off

5% 50 55.1 60.2 65.0 69.5 73.5 77.5

10% 50 54.4 58.7 62.9 66.9 70.6 74.1

20% 50 53.5 57.0 60.3 63.6 66.8 69.9

30% 50 52.9 55.8 58.6 61.4 64.1 66.7

40% 50 52.4 54.8 57.2 59.5 61.8 64.1

50% 50 52.0 54.0 56.0 57.9 59.9 61.8

Source: From formulae given in the Appendix.

TABLE 5.2

Probability of borderline individual with

biased score meeting a cut-off level.

Bias b 0 .05 .10 .15 .20 .25 .30

Reliability

0.95 .5 .589 .672 .749 .814 .868 .910

0.925 .5 .572 .642 .708 .767 .819 .863

0.90 .5 .563 .624 .682 .737 .785 .829

0.85 .5 .551 .602 .651 .697 .741 .781

0.80 .5 .544 .588 .631 .673 .712 .749

0.70 .5 .536 .572 .608 .642 .676 .708

Source: From formulae given in the Appendix.

§6. Discussion

In a review of this nature, it is inevitable that any literature search may be incomplete, espe-
cially through the non-appearance of reports of research which has found no significant difference
of the gender differences concerned. The ideal type of study is one that records these gender differ-
ences irrespective of the size, and in this regard data such as in Murphy (1980) and Daley (1985)
are valuable in providing some indication as to the variability of the bias factor which this paper
has illustrated.

It is equally significant that of all the reports found in our literature search (which, while it
has no claims to being comprehensive, does claim not to have suppressed any pertinent references),
all except one (viz, Wyer (1967)) reported a bias favouring males under multiple choice assessment,
while Wyer recorded no significant difference. As an indication of sample sizes needed, groups of at
least 200 males and 200 females are needed in order to be moderately sure of finding a bias of size
b = 0.1.

One of the limitations of gauging the extent of sex-related bias between the two measures, is
to know whether it extends over the whole range (with the possible exception of floor and ceiling
effects). For example, the data underlying Daley (1985) yield the graphs as shown in Figure 1 of
the average male and female TE scores (Yi in §5) relative to a given ASAT score (Xi in §5). It is
clear from this diagram that regression to the mean of the average avei(Yi | Xi = x) scores occurs,
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Figure 1. Illustrating sex-bias between multiple-choice ASAT scores and course-assessed (TE)
scores: Mean TE scores for Females (– – –) and Males (——) within bands of ASAT scores
(bandwidth = 5). ‘Perfect agreement’ line (TE = 3.6(ASAT) + 10) (· · ·) also shown.

consistent with correlation between the two measures of about 0.65, that a bias between the two
measures with regard to sex occurs over almost the entire range, and that there is a ceiling effect
associated with high ASAT scores (where there are relatively few data points on which the plotted
averages are based).

A possible statistical explanation for an apparent observed bias as in Figure 1 may be a dis-
parate proportion between the sexes of the overall small number of individuals whose standardized
scores have a difference Xi − Yi considerably in excess of twice the standard deviation of the er-
ror term (and here, ‘error’ refers both to measurement and model errors). The inclusion of such
‘outlying’ individuals in a comparison of the populations would tend to invalidate any evaluation
of the presence or otherwise of an overall bias. One such data set similar to that in Daley (1985)
was examined, and while the effect of any outliers was small, there appeared the suggestion that
amongst such potential outliers, the females but not the males tended to have somewhat larger
deviations between the verbal and quantitative sub-scale scores of the SAT concerned.

As Kingdon et al. (1983) imply, and as in the circumstances that lead to the work underlying
Daley (1985), the existence of bias as illustrated in this review implies that any “score equating”
method that relies on a multiple-choice aptitude test to place groups of students’ scores from
coursework or conventional examinations on a common scale, introduces a sex bias into the latter
scores so soon as the gender-mix of the course-work or examination groups varies appreciably.

Regard an educational measurement as embracing behavioural responses, both to the educative
process itself and to the assessment instrument(s) being used. Then it is quite plausible a priori that
there may be interactions with those responses attributable to any different behavioural patterns of
the sexes, in spite of any attempts in those assessments to focus purely on matters reflecting mental
processes. If mental processing affects the emotional disposition of an individual, and if emotional
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dispositions vary between the sexes, then a sex-related interaction effect on mental processing can
be anticipated.

Indeed, in terms of possible differences in cognitive functioning of the two sexes, the assessment
of individuals on the same substantive material through a variety of instruments may point to
differences in such functioning. Papers such as those of Wood (1976, 1978) and Hoste (1982) may
be useful in this regard through their discussion cf individual items.

Appendix: Formulae for the Tables of Section 5.

Let Ψ(x) denote the tail area of a standard normal distribution, meaning, that if X is normally
distributed with zero mean and unit standard deviation, then Pr{X > x} = Ψ(x). Table 5.1
tabulates Ψ(x− b)/[Ψ(x− b) + Ψ(x+ b)] for the values x satisfying Ψ(x) = 0.05, 0.1, 0.2, . . . , 0.5.

For Table 5.2, recall that with the true score model for which

observed score = true score + error,

the reliability R is given by

R = var(true score)
/
var(observed score).

The error standard deviation s is thus equal to
√
1−R. Assuming a normal distribution for the

“error” variable, Table 5.2 tabulates

Ψ
(
− b/

√
1−R

)
.

Obviously the numerical results arising from these formulae should not be interpreted literally, but
rather as indicative of changes that occur depending on the model parameter values.

References

ADAMS, R.J. (1984). Sex Bias in ASAT? ACER Research Monograph No. 24. Hawthorn, Vic.,
Australia: Australian Council for Educational Research.

ANASTASI, A. (1958). Differential Psychology — Individual and Group Differences in Behaviour,
Third Edition. New York : Macmillan.

ANASTASI, A. (1976). Psychological Testing, Fourth Edition. New York: Macmillan.

BRELAND, H.M. (1979). Population validity and college entrance measures. College Board Research
Monograph No. 8. New York: College Entrance Examination Board.

BRELAND, H.M. & GRISWOLD, P.A. (1982). Use of a performance test as a criterion in a differential
validity study. J. Educ. Psych. 74, 713–721.

CALDWELL, E. & HARTNETT, R. (1967). Sex bias in college grading? J. Educ. Meas. 4, 129–132.

CARTER, R.S. (1952). How invalid are marks assigned by teachers? J. Educ. Psych. 43, 218–228.

DALEY, D.J. (1985). Standardization by bivariate adjustment of internal assessments: sex bias and
other statistical matters. Australian J. Educ. 27, 231–247.

DWYER, C.A. (1979). The role of tests and their construction in producing sex-related differences.
pp.335–353 in Wittig & Peterson (1979).

HARDING, J. (1979). Sex differences in examination performance at 16+. Physics Educ. 14, 280–
284.

HEWITT, B.N. & GOLDMAN, R.D. (1975). Occam’s razor slices through the myth that college
women overachieve. J. Educ. Psych. 67, 323–330.



142 Determining Relative Academic Achievement

HOSTE, R. (1982). Sex differences and similarities in performance in a CSE biology examination.
Educ. Studies 8, 141–153.

JENSEN, A.R. (1980). Bias in Mental Testing. London: Methuen.

KINGDON, J.M., FRENCH, S., PIERCE, G.E. & WOODTHORPE, A.J. (1983). Awarding grades on
differentiated papers in school examinations at 16 plus. Educ. Res. 25, 220–229.

LIEBERT, R.M. & POULOS, R.W. (Eds.) (1973). Educational Psychology — A Contemporary View.
Del Mar, Calif.: Communications Research Machines Inc. Books.

LINN, R.L. (1973). Fair test use in selection. Review Educ. Res. 43, 139–161.

MACCOBY, E.E. & JACKLIN, C.N. (1974). The Psychology of Sex Differences. Stanford: Stanford
Univ. P., and (1975) London: Oxford Univ. P.

MONDAY, L.A., HOUT, D.P., & LUTZ, S.W. (1967). College Student Profiles: American College
Testing Program. Iowa City: ACT Publications.

MURPHY, R.J.L. (1978). Sex differences in objective test performance. Unpublished AEB Research
Report, RAC/56.

MURPHY, R.J.L. (1980). Sex differences in GCE examination entry statistics and success rates.
Educ. Studies 6, 169–178.

PALLAS, A.M. & ALEXANDER, K.L. (1983). Sex differences in quantitative SAT performance: new
evidence on the differential coursework hypothesis. Amer. Educ. Res. J. 20, 165–182.

PETERSON, A.C. & WITTIG, M.A. (1979). Sex-related differences in cognitive functioning: an
overview. pp.1–17 in Wittig & Peterson (1979).

SHERMAN, J.A. (1978). Sex-related Cognitive Differences: An Essay on Theory and Evidence.
Springfield, Ill.: Charles C. Thomas.

STOCKARD, J. & WOOD, J.W. (1984). The myth of female underachievement: a re-examination of
sex differences in academic underachievement. Amer. Educ. Res. J. 21, 825–838.

VELDMAN, D.J. (1968). Effects of sex, aptitudes and attitudes on the academic achievement of
college freshmen. J. Educ. Meas. 5, 245–249.

WIEGAND, P. (1982). Objective testing in Geography at 16+. Geography 67, 332–336.

WIRTZ, W. (1977). On Further Examination: Report of the Advisory Panel on the Scholastic
Aptitude Test Score Decline. New York: College Entrance Examination Board.

WITTIG, M.A. & PETERSON, A.C. (eds.) (1979). Sex-Related Differences in Cognitive Functioning.
Developmental Issues. New York: Academic Press.

WOOD, R. (1976). Sex differences in mathematics attainment at GCE ordinary level. Educ. Studies
2, 141–160.

WOOD, R. (1978). Sex differences in answers to Enqlish language comprehension items. Educ.
Studies 4, 157–165.

WYER, R.S. Jr. (1967). Behavioural correlates of academic achievement: conformity under achieve-
ment- and affiliation-incentive conditions. J. Personality and Social Psych. 6, 255–263.



Reprint of Different sex differences from . . .modes of assessment: Common experiences in three countries 143

Replicate of Figure 1 based on ACT 1997, 1998, 2000 and 2001 datasets (mixed-sex colleges).
Illustrating sex-bias between multiple-choice ASAT scores and course-assessed (TE) scores: Mean
TE scores for Females (– – –) and Males (——) within bands of ASAT scores (bandwidth = 5).
‘Perfect agreement’ line (TE = ASAT + 2) (· · ·).
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Complementary version of Figure 1 based on ACT 1997, 1998, 2000 and 2001 datasets (mixed-sex
colleges). Illustrating sex-bias between multiple-choice ASAT scores and course-assessed (TE)
scores: Mean ASAT scores for Females (– – –) and Males (——) within bands of TE scores
(bandwidth = 10 at top, = 5 elsewhere). ‘Perfect agreement’ line (TE = ASAT + 2) (· · ·).


